机器学习中的标量、向量、矩阵、和张量的概念

本文深入浅出地介绍了线性代数的核心概念,包括标量、向量、矩阵和张量,揭示了这些数学工具如何支撑起线性代数的理论体系,是初学者了解线性代数不可或缺的入门读物。

在线性代数中,我们必须掌握几个核心概念:标量、向量、矩阵和张量,它们是构成线性代数学科的基石。

  • 标量 (Scalar)

标量其实就是一个独立存在的数,比如在线性代数中一个实数 5 就可以被看作一个标量,所以标量的运算相对简单,与我们平常做的数字算术运算类似。

  • 向量 (Vector)

向量指一列按顺序排列的元素,我们通常习惯用括号将这一列元素括起来,其中的每个元素都由一个索引值来唯一地确定其在向量中的位置,假设这个向量中的第 1 个元素是 x1 , 它的索引值就是 1,第 2 个元素是 x2 , 它的索引值就是 2,以此类推。如下所示就是一个由三个元素组成的向量,这个向量的索引值从 1 到 3 分别对应了从 x1 到 x3 的这三个元素:

向量

  • 矩阵 (Matrix)

矩阵就是一个二维数组结构,我们会用括号将其中的全部元素括起来。向量的索引值是一维的,而矩阵的索引值是二维的,所以在确定矩阵中每个元素的位置时需要两个数字。

举例来,假设在一个矩阵的左上角存在一个元素 x11 ,那么确定这个元素的索引值就是由两个 1 构成的二维索引值,即“11”, 这个二维索引值代表矩阵中第1行和第1列交汇处的数字,所以前面的一个数字 1 可以被定义为当前矩阵的行号,后面的一个数字 1 可以被定义为当前矩阵的列号。如下就是一个三行两列的矩阵:

矩阵

  • 张量 (Tensor)

若数组的维度超过了二维,我们就可以用张量来表示,所以我们可以将张量理解为高维数组。同理,张量的索引值用两个维度的数字来表示已经不够了,其中的元素的索引值会随着张量维度的改变而改变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wohu007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值