Redis 笔记(13)— scan 和 keys 寻找特定前缀key 字段(命令格式、使用示例、定位大key)

本文详细介绍了Redis中的keys指令及其缺点,包括可能导致的服务卡顿和无法分页。接着,文章转向了scan指令,阐述了其分步迭代、limit参数和模式匹配等功能,并解释了为何返回结果可能有重复。此外,还提到了如何利用scan指令进行大key的定位,以解决内存管理和性能问题。最后,讨论了如何通过redis-cli找出Redis实例中的大key,以及如何通过休眠参数降低对线上服务的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. keys

Redis 提供了一个简单暴力的指令 keys 用来列出所有满足特定正则字符串规则的 key

127.0.0.1:6379> keys *
(empty array)
127.0.0.1:6379> set wohu1104go1 1
OK
127.0.0.1:6379> set wohu1104go2 2
OK
127.0.0.1:6379> set wohu1104go3 3
OK
127.0.0.1:6379> set wohu1104go4 5
OK
127.0.0.1:6379> set wohu1104go5 5
OK
127.0.0.1:6379> set wohu1104python 1
OK
127.0.0.1:6379> set wohu1104python2 2
OK
127.0.0.1:6379> set wohu1104python3 3
OK
127.0.0.1:6379> set wohu1104python4 4
OK
127.0.0.1:6379> keys *
1) "wohu1104python4"
2) "wohu1104go3"
3) "wohu1104python3"
4) "wohu1104go1"
5) "wohu1104go4"
6) "wohu1104python2"
7) "wohu1104go2"
8) "wohu1104python"
9) "wohu1104go5"
127.0.0.1:6379> keys wohu1104go*
1) "wohu1104go3"
2) "wohu1104go1"
3) "wohu1104go4"
4) "wohu1104go2"
5) "wohu1104go5"
127.0.0.1:6379> keys wohu1104python*
1) "wohu1104python4"
2) "wohu1104python3"
3) "wohu1104python2"
4) "wohu1104python"
127.0.0.1:6379> 

这个指令使用非常简单,提供一个简单的正则字符串即可,但是有很明显的两个缺点

  1. 没有 offsetlimit 参数,一次性吐出所有满足条件的 key,万一实例中有几百万个 key 满足条件,输出结果很难分析。
  2. keys 算法是遍历算法,复杂度是 O(n),如果实例中有千万级以上的 key,这个指令就会导致 Redis 服务卡顿,所有读写 Redis 的其它的指令都会被延后甚至会超时报错,因为 Redis 是单线程程序,顺序执行所有指令,其它指令必须等到当前的 keys 指令执行完了才可以继续。

2. scan

2.1 命令

scan命令是一个基于游标的迭代器,每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为 scan命令的游标参数, 以此来延续之前的迭代过程。

scan返回一个包含两个元素的数组, 第一个元素是用于进行下一次迭代的新游标, 而第二个元素则是一个数组, 这个数组中包含了所有被迭代的元素。如果新游标返回 0 表示迭代已结束。

scan 指令是一系列指令,除了可以遍历所有的 key 之外,还可以对指定的容器集合进行遍历。比如

  • zscan 遍历 zset 集合元素
  • hscan 遍历 hash 字典的元素
  • sscan 遍历 set 集合的元素。

它们的原理同 scan 都会类似的,因为 hash 底层就是字典,set 也是一个特殊的 hash(所有的 value 指向同一个元素),zset 内部也使用了字典来存储所有的元素内容。

scan 命令基本语法如下:

SCAN cursor [MATCH pattern] [COUNT count]
  • cursor - 游标。
  • pattern - 匹配的模式。
  • count - 指定从数据集里返回多少元素,默认值为 10 。

第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。

2.2 特点

Redis 为了解决这个 keys 性能问题,它在 2.8 版本中加入了指令—— scanscan 相比 keys 具备有以下特点:

  • 复杂度虽然也是 O(n),但是它是通过游标分步进行的,不会阻塞线程;
  • 提供 limit 参数,可以控制每次返回结果的最大条数,limit 只是一个 hint,返回的结果可多可少;
  • keys 一样,它也提供模式匹配功能;
  • 服务器不需要为游标保存状态,游标的唯一状态就是 scan 返回给客户端的游标整数;
  • 返回的结果可能会有重复,需要客户端去重,这点非常重要;
  • 遍历的过程中如果有数据修改,改动后的数据能不能遍历到是不确定的;
  • 单次返回的结果是空的并不意味着遍历结束,而要看返回的游标值是否为零;

2.3 使用

使用下面代码往 Redis 中添加 1000 个有相同前缀的 key

import redis

client = redis.Redis("127.0.0.1", 6379)
for i in range(1000):
    client.set("wohu{}".format(i), i)

假设我们要寻找 wohu520 这个 key,那么使用下面的命令,

127.0.0.1:6379> scan 0 match wohu52* count 100
1) "488"
2) 1) "wohu529"
127.0.0.1:6379> scan 488 match wohu52* count 100
1) "372"
2) 1) "wohu52"
127.0.0.1:6379> scan 372 match wohu52* count 100
1) "242"
2) 1) "wohu523"
   2) "wohu521"
   3) "wohu522"
127.0.0.1:6379> scan 242 match wohu52* count 100
1) "342"
2) (empty array)
127.0.0.1:6379> scan 342 match wohu52* count 100
1) "449"
2) (empty array)
127.0.0.1:6379> scan 449 match wohu52* count 100
1) "261"
2) 1) "wohu527"
127.0.0.1:6379> scan 261 match wohu52* count 100
1) "93"
2) 1) "wohu525"
127.0.0.1:6379> scan 93 match wohu52* count 100
1) "139"
2) 1) "wohu524"
   2) "wohu528"
127.0.0.1:6379> scan 139 match wohu52* count 100
1) "279"
2) (empty array)
127.0.0.1:6379> scan 279 match wohu52* count 100
1) "0"
2) 1) "wohu526"
   2) "wohu520"
127.0.0.1:6379> 

从上面的过程可以看到虽然提供的 limit 是 100,但是返回的结果只有几个甚至没有。因为这个 limit 不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等于)。如果将 limit 设置为 10,你会发现返回结果是空的,但是游标值不为零,意味着遍历还没结束。

2.4 存储结构

Redis 中所有的 key 都存储在一个很大的字典中,是一维数组 + 二维链表结构,第一维数组的大小总是 2^n(n>=0),扩容一次数组大小空间加倍,也就是 n++

内部存储结构

scan 指令返回的游标就是第一维数组的位置索引,我们将这个位置索引称为槽 (slot)。如果不考虑字典的扩容缩容,直接按数组下标挨个遍历就行了。limit 参数就表示需要遍历的槽位数,之所以返回的结果可能多可能少,是因为不是所有的槽位上都会挂接链表,有些槽位可能是空的,还有些槽位上挂接的链表上的元素可能会有多个。每一次遍历都会将 limit 数量的槽位上挂接的所有链表元素进行模式匹配过滤后,一次性返回给客户端。

3. 大 key 定位

有时候会因为业务人员使用不当,在 Redis 实例中会形成很大的对象,比如一个很大的 hash,一个很大的 zset 这都是经常出现的。这样的对象对 Redis 的集群数据迁移带来了很大的问题,在内存分配上,如果一个 key 太大,那么当它需要扩容时,会一次性申请更大的一块内存,这也会导致卡顿。如果这个大 key 被删除,内存会一次性回收,卡顿现象会再一次产生。

如果观察到 Redis 的内存大起大落,这极有可能是因为大 key 导致的,这时候你就需要定位出具体是那个 key,进一步定位出具体的业务来源,然后再改进相关业务代码设计。

为了避免对线上 Redis 带来卡顿,这就要用到 scan 指令,对于扫描出来的每一个 key,使用 type 指令获得 key 的类型,然后使用相应数据结构的 size 或者 len 方法来得到它的大小,对于每一种类型,保留大小的前 N 名作为扫描结果展示出来。

上面这样的过程需要编写脚本,比较繁琐,不过 Redis 官方已经在 redis-cli 指令中提供了这样的扫描功能,我们可以直接拿来即用。

redis-cli -h 127.0.0.1 -p 6379 –-bigkeys 

如果你担心这个指令会大幅抬升 Redisops 导致线上报警,还可以增加一个休眠参数。

redis-cli -h 127.0.0.1 -p 6379 –-bigkeys -i 0.1 

上面这个指令每隔 100 条 scan 指令就会休眠 0.1s,ops 就不会剧烈抬升,但是扫描的时间会变长。

参考:
https://juejin.cn/book/6844733724618129422/section/6844733724710404110

Redis使用SCAN命令获取所有符合条件的key,可以使用以下步骤: 1. 使用SCAN命令进行迭代遍历,从而获取所有符合条件的keySCAN命令可以配合MATCH参数进行模糊匹配,配合COUNT参数进行分批迭代,以避免一次遍历过多数据导致Redis阻塞。 ``` SCAN cursor [MATCH pattern] [COUNT count] ``` 其中,cursor参数表示当前迭代的游标位置,初次迭代时应该为0;MATCH参数表示匹配的模式,可以使用通配符*?,默认为*;COUNT参数表示每次迭代返回的元素数量,用于控制一次迭代的数据量。 2. 将符合条件的key存入一个列表中,可以使用Redis的列表数据结构。 ``` LPUSH list_name element1 [element2 ...] ``` 其中,list_name为列表名称,element1、element2等为要存入列表的元素。 3. 对于数据量的情况,可能需要多次迭代才能获取所有符合条件的key。因此,在每次迭代结束后,需要判断返回值中的游标位置是否为0,如果为0,则表示遍历结束,否则需要继续进行迭代。 4. 最终,可以通过LRANGE命令获取存储所有符合条件key的列表中的所有元素。 ``` LRANGE list_name 0 -1 ``` 其中,list_name为列表名称,0-1表示获取所有元素。 需要注意的是,对于数据量的情况,建议使用分批迭代的方式,以避免Redis阻塞。同时,在使用SCAN命令遍历时,由于Redis是单线程模型,因此需要注意不要过度占用Redis资源,影响Redis的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wohu007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值