[模型优化]模型欠拟合及过拟合判断、优化方法

目录

一、模型欠拟合及过拟合简介

二、模型欠拟合及过拟合判断

三、模型欠拟合与过拟合的优化方法

1、模型欠拟合

2、模型过拟合


一、模型欠拟合及过拟合简介

模型应用时发现效果不理想,有多种优化方法,包含:

 

    • 添加新特征
    • 增加模型复杂度
    • 减小正则项权重
    • 获取更多训练样本
    • 减少特征数目
    • 增加正则项权重

 

具体采用哪种方法,才能够有效地提高模型精度,我们需要先判断模型是欠拟合,还是过拟合,才能确定下一步优化方向。

 

                                   图1

模型欠拟合,即高偏差(high bias,是指模型未训练出数据集的特征,导致模型在训练集、测试集上的精度都很低。如图1左图所示。

模型过拟合,即高方差(high variance)是指模型训练出包含噪点在内的所有特征,导致模型在训练集的精度很高,但是应用到新数据集时,精度很低。如图1右图所示。

 

 

二、模型欠拟合及过拟合判断

1、数据集划分

数据集划分为训练集(Trai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值