目录
一、模型欠拟合及过拟合简介
模型应用时发现效果不理想,有多种优化方法,包含:
-
- 添加新特征
- 增加模型复杂度
- 减小正则项权重
- 获取更多训练样本
- 减少特征数目
- 增加正则项权重
具体采用哪种方法,才能够有效地提高模型精度,我们需要先判断模型是欠拟合,还是过拟合,才能确定下一步优化方向。
图1
模型欠拟合,即高偏差(high bias),是指模型未训练出数据集的特征,导致模型在训练集、测试集上的精度都很低。如图1左图所示。
模型过拟合,即高方差(high variance),是指模型训练出包含噪点在内的所有特征,导致模型在训练集的精度很高,但是应用到新数据集时,精度很低。如图1右图所示。
二、模型欠拟合及过拟合判断
1、数据集划分
数据集划分为训练集(Trai