昇腾芯片 & 昇思 MindSpore 大模型训练平台 | 昇思25天学习打卡营第1天 | wordworld

华为昇腾(Ascend)芯片

昇腾(Ascend)芯片是由华为自主设计、研发的人工智能算力芯片。最具代表性的,包括 2019 年发布的支持全场景人工智能应用的昇腾 910 系列、以及低功耗的面向边缘计算的昇腾 310 系列。

芯片指标Ascend310Ascend910
FP16-TOPS8256
INT8-TOPS16512
最大功耗8w350w
制程12nm7nm
  • 对比 Nvidia 芯片
芯片显存INT8-TOPSFP16-TOPS最大功耗
A1024250500150
A4048299598300
A100806241248300
H100803958700
P482275
P402447250
T41613070
V1003262300
K8012x28.74 TFlops300
309024285450
4090241177425
5000321044 TFLOPS250

昇思 MindSpore 大模型训练平台

昇思 MindSpore 是一个包含了用于大语言模型推理、训练、调试等场景的开发框架。对昇腾(Ascend)全系列芯片做了完备的支持和优化。提供各类 AI 算法库的多层级访问的 Python API。下图是 MindSpore 的主要工作流程:

昇思 MindSpore 工作流

python 模块 mindspore 的常用类

class用途
nn模型定义和训练
dataset.MnistDatasetMNIST 数据集
dataset.vision图像处理
dataset.transforms数据变换

参考

### 如何在昇腾910B上训练扩散模型 #### 准备环境 为了能够在昇腾910B平台上顺利运行并训练扩散模型,需要先配置好开发环境。这包括安装Ascend SDK以及设置必要的依赖库。确保已正确设置了CUDA、cuDNN以及其他相关工具链版本。 #### 数据集准备 对于任何机器学习项目来说,数据都是至关重要的资源之一。针对特定应用场景收集高质量的数据集,并对其进行预处理操作,比如裁剪、缩放图像尺寸等,以便于后续用于训练过程中的输入[^1]。 #### 构建计算图与定义网络结构 采用支持多框架兼容性的文件格式来保存已经训练完成的神经网络权重参数,这样可以在不同平台间轻松迁移模型而无需重新编写代码逻辑。具体到本案例中,则意味着可以利用开源社区提供的成熟解决方案作为起点来进行定制化调整。 #### 修改Pipeline配置 当涉及到具体的硬件适配工作时,可能还需要对原有的推理管道做一些针对性改动。例如,在`pipeline/unet_simple_opencv.pipeline` 文件内找到 `mxpi_tensorinfer0` 组件并将其中关于外部加载模型路径的部分更新为我们本地编译生成的新版OM文件位置 `"modelPath": "model/unet_hw960_bs1.om"` [^2]。 #### 编写训练脚本 最后一步就是实际动手编码实现整个流程了。这里给出一段简单的Python伪代码片段展示如何调用API接口启动一次完整的迭代周期: ```python import mindspore as ms from mindspore import nn, Model # 定义损失函数和优化器 loss_fn = ... optimizer = ... # 创建Model实例 network = DiffusionNetwork() model = Model(network, loss_fn=loss_fn, optimizer=optimizer) # 开始训练循环 for epoch in range(num_epochs): model.train(train_dataset) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

游戏AI开发者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值