数字信号处理基础----FM的调制与解调

1. FM调制与解调的数学原理

1.1 FM调制中的常用指标

  FM是模拟调制中的一种,也就是频率调制。就是把基带信号用载波的频率来承载。直接的表现方式是调角,也是一种非线性调制。
在这里插入图片描述
  角度调制时,已调信号的振幅恒定,信息是通过角度来承载的。


在这里插入图片描述
在这里插入图片描述
  对于FM调制,基带信号的信息,是通过频率来承载的,需要满足的关系是,基带信号与瞬时角频偏呈线性关系。
  其中 Kf 是调频灵敏度,也就是 单位基带信号的幅度变化 引起的已调信号的 频率偏移量 。反应 瞬时角频率偏移 随着基带信号的幅度线性变化。



在这里插入图片描述
对于FM调制,还需要关注的指数是最大角频偏和调制指数。首先从最简单的单音信号开始,最大的角频偏就是调频灵敏度 Kf和单音信号幅度最大值的乘积。对频率进行积分可以得到载波信号中的角度。这个 mf 也最大相位偏移。由此可以得到信号的调频指数。 调频指数就是 最大频偏 和 基带信号的频率 的比值(最大角频偏和基带角频率的比值)。对于非单音信号,其基本和单音信号差不多,一般信号可以分解为多个单音信号,因此常常关注和单音信号类似的指标即可,比如最大的基带信号频率。


在这里插入图片描述
  有了已调信号的时域表达式,可以得到已调信号的频域表达式,从而可以得到已调信号的带宽。在工程上满足如下关系:
在这里插入图片描述
在这里插入图片描述

1.2 FM正交调制

在现在的调制接调方案当中常常会采取的一种方案就是通过正交调制,在之前学习数字信号处理基础的时候,也学习了正交调制的方法,和基本概念。其实FM也可以通过正交调制地方式来进行。
使用三角公式将已调信号进行展开,即可以得到一个IQ信号的调制形式。IQ路信号的相位为,调频灵敏度Kf与 基带信号在0~t时刻的积分的乘积。


在这里插入图片描述

如何产生IQ路信号? 通过已知的基带信号,调频灵敏度,产生一个正余弦形式的信号就可以了。调频灵敏度Kf与 基带信号在0~t时刻的积分的乘积,就是相位。因此,使用一个ROM保存一个周期的正余弦信号的波形,然后将调频灵敏度Kf与 基带信号在0~t时刻的积分的乘积,作为地址提供给ROM,就能从ROM当中得到输出的波形。


在这里插入图片描述

1.3 在用数字信号的方式来处理FM

在使用数字的方式来完成FM的调制的时候,最重要的就是确定两个参数:调频灵敏度Kf最大角频偏△w。有了最大角频偏,就能够比较容易地得到调频灵敏度。有了调频灵敏度之后,就可以将基带信号,转换为使用正余弦的形式。也就是上面的:


在这里插入图片描述
在这里插入图片描述

1.3.1 确定最大角频偏

如何确定最大地角频偏?这个可以参考DDS的原理。在数字信号处理中,需要将2*pi进行一个映射,映射到2N。关于DDS产生对应频率的信号可以参考:Xilinx DDS IP 使用。

在这里插入图片描述

有了这个基础就可以根据最大的频偏求得最大的角频偏了(最大频率控制字);例如调频广播FM要求的最大频偏是75KHz,那么根据上面的公式,就能够很容易地求出最大角频偏。


M = Δ f f s × 2 n M = \frac{\Delta f}{fs}\times 2^{n} M=fsΔf​×2n
1.3.2 确定调频灵敏度
 根据前面地公式,不难看到调频灵敏度和基带信号最大地幅度的乘积,就是最大的角频偏。因此,有了最大的角频偏和基带信号的最大的幅度,就能够求出调频灵敏度。


k f = Δ w A m k_{f} = \frac{\Delta w}{Am} kf​=AmΔw​

1.3 FM 正交解调

  FM正交解调就是将已调信号,通过乘上于其载波相同频率的正弦和余弦分量。然后通过低通滤波器,滤除二倍载波频率分量,保留下来的就是基带信号的正余弦形式。


在这里插入图片描述
得到了I路和Q路信号之后,再对 I路,Q路信号的比值求反正切 ,即可得到基带信号。这个求解m(n)序列的过程就是鉴相。
在这里插入图片描述
在上面解调m(n)序列的时候,使用了反正切,这个运算量很大,在FPGA中也难以直接实现,所以,通过改进算法,可以简化计算过程。


在这里插入图片描述
在这里插入图片描述


 

 

 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值