电磁波中的波段划分:L波段、S波段、C波段、X波段、Ku波段、K波段、Ka波段

===========================第一篇===========================

旧的无线电波段划分中L、S、C、X、Ku、Ka、W波段频率分为分别是多少?

这种划分方式是雷达业内的通俗叫法,没有一个严格、统一的标准。通常的划分是:L波段 1~2GHz;S波段 2~4GHz;C波段 4~8GHz;X波段 8~12GHz;Ku波段 12~18GHz;K波段 18~27GHz;Ka波段 27~40GHz;U波段 40~60GHz;V波段 60~80GHz;W波段 80~100GHz.。
转自:http://zhidao.baidu.com/link?url=08_mpm1_9-AWFo2SFncRgNgveW5BiBx4ezGIwRw9uufeDuj6PS3hCGPXAaZHxt2263toUYm-KzAUIuckK80Kkq


===========================第二篇===========================

Other Microwave bands

L band1 to 2 GHz
S band2 to 4 GHz
C band4 to 8 GHz
X band8 to 12 GHz
Ku band12 to 18 GHz
K band18 to 26.5 GHz
Ka band26.5 to 40 GHz
Q band30 to 50 GHz
U band40 to 60 GHz
V band50 to 75 GHz
E band60 to 90 GHz
W band75 to 110 GHz
F band90 to 140 GHz
D band110 to 170 GHz
转自:http://en.wikipedia.org/wiki/Ka_band


===========================第三篇===========================

船用雷达分为x波段和s波段,请问这两种雷达有什么区别?为什么要装两部?

  雷达波段代表的是发射的电磁波频率(波长)范围,非相控阵单雷达条件下,高频(短波长)的波段一般定位更准确,但作用范围短;低频(长波)的波段作用范围远,发现目标距离大。
  S波段雷达一般作为中距离的警戒雷达和跟踪雷达。
  X波段雷达一般作为短距离的火控雷达。

  迄今为止对雷达波段的定义有两种截然不同的方式。较老的一种源于二战期间,它基于波长对雷达波段进行划分。它的定义规则如下:
  最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变为22cm。
  当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波)。
  在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表座标上的某点。
  为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C即Compromise,英语“结合”一词的字头)。
  在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长。这一波长的电磁波就被称为K波段(K = Kurtz,德语中“短”的字头)。
  “不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收。结果这一波段的雷达不能在雨中和有雾的天气使用。战后设计的雷达为了避免这一吸收峰,通常使用比K波段波长略长(Ka,即英语K-above的缩写,意为在K波段之上)和略短(Ku,即英语K-under的缩写,意为在K波段之下)的波段。
  最后,由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头)。
  该系统十分繁琐、而且使用不便。终于被一个以实际波长划分的波分波段系统取代,这两个系统的换算如下。
  原 P波段 = 现 A/B 波段
  原 L波段 = 现 C/D 波段
  原 S波段 = 现 E/F 波段
  原 C波段 = 现 G/H 波段
  原 X波段 = 现 I/J 波段
  原 K波段 = 现 K 波段
转自:http://zhidao.baidu.com/link?url=wz9qoW0z587RmslXJ5QSVIXO7I8IQcYPrc3nvXxnlRx4hBXOrfwIq0bCWXYwpa1hGhEP7WoRgi15fty-WdsYuq
### 使用 PointNet++ 进行实例分割并训练自定义数据集 #### 数据集准备 为了使用 PointNet++ 对自定义数据集进行实例分割,首先需要准备好合适的数据集格式。通常情况下,PointNet 和 PointNet++ 的输入数据由点云的 XYZ 坐标组成,并可能附加 RGB 颜色信息和标签信息。根据已有资料[^3],标准点云样本数据集中应包含 (XYZ) 坐标以及 (label) 标签信息。 如果要扩展到实例分割任务,则需进一步提供每一点所属的具体实例 ID 或类别信息。例如,在 ShapeNet 数据集中,除了点云图像外还提供了 Label(分类类别)和 Target(分割类别)。而在 S3DIS 中仅输出点云图像和分割类别[^1]。因此,针对自定义数据集,建议按照以下格式存储: - **每一行表示一个点** - 每一列表示该点的不同属性,如 `X Y Z R G B Instance_ID`,其中: - X, Y, Z 表示三维空间中的坐标; - R, G, B 可选,用于颜色信息; - Instance_ID 是关键字段,用来区分不同对象实例。 可以借助工具如 CloudCompare 来处理原始点云数据,并将其转换为目标格式[^4]。最终保存为 `.txt` 文件或其他支持的大规模点云文件格式。 #### 网络模型调整 PointNet++ 主要是设计来解决语义分割问题,即给定一组点云预测其对应的类别标签。然而,实例分割不仅涉及类别的判断还需要识别同一类别下的多个独立个体。为此可以在原架构基础上引入额外机制实现这一目标。 一种常见方法是在最后阶段加入聚类算法或者 Mask Prediction 技术完成从像素级标注向实例划分过渡的过程。具体来说就是在原有网络结构之后增加一层操作负责生成掩码(mask),并通过非极大值抑制(NMS)等方式提取单独的对象边界框或区域[^2]。 以下是基于 PyTorch 实现的一个简化版框架代码片段展示如何修改基础 PointNet++ 结构适应实例分割需求: ```python import torch.nn as nn from pointnet2_modules import PointNetSetAbstractionMsg, PointNetFeaturePropagation class InstanceSegmentationPointNetPP(nn.Module): def __init__(self): super(InstanceSegmentationPointNetPP, self).__init__() # Set Abstraction Layers with Multi-Scale Grouping self.SA_layer_1 = PointNetSetAbstractionMsg(...) self.SA_layer_2 = PointNetSetAbstractionMsg(...) # Feature Propagation Network for Upsampling self.FP_layer_1 = PointNetFeaturePropagation(...) self.FP_layer_2 = PointNetFeaturePropagation(...) # Additional Layer to Predict Masks per Point self.mask_predictor = nn.Sequential( nn.Conv1d(in_channels=..., out_channels=64, kernel_size=1), nn.BatchNorm1d(64), nn.ReLU(), nn.Dropout(p=0.5), nn.Conv1d(in_channels=64, out_channels=num_instances, kernel_size=1), # num_instances is the number of possible instances. ) def forward(self, xyz): l0_xyz = xyz ... fp_out = ... # Output from final FP layer masks_logits = self.mask_predictor(fp_out) return masks_logits ``` 上述代码展示了通过添加卷积层序列作为 mask predictor 输出每个点属于哪个实例的概率分布情况。实际应用时还需考虑损失函数的设计以优化这些预测结果的质量。 #### 训练过程注意事项 当开始训练之前,请确认以下几个方面设置无误: - 输入张量形状匹配所构建模型的要求; - 正确加载预处理后的自定义数据集; - 定义适合于实例分割任务的目标函数比如 Dice Loss 加上 Cross Entropy Loss 组合形式; 另外由于点云数据往往较大且稀疏特性明显,所以推荐采用 mini-batch SGD 方法配合 GPU 加速计算效率提升效果显著。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值