numpy和array合并

import numpy as np

a = np.array([1, 1, 1])
b = np.array([2, 2, 2])

print("a:\n", a)
print("b:\n", b)
c = np.vstack((a, b))
print("a和b上下合并:\n", np.vstack((a, b)))  # vertical stack上下合并
print(c.shape)

print("a和b左右合并:\n", np.hstack((a, b)))

# transport 不能将横向数列变成竖项数列
print("在行加上一个维度:\n", a[np.newaxis, :])
print("在列上加一个维度:\n", a[:, np.newaxis])

d = np.concatenate((a, b, b, a), axis=0)  # https://www.cnblogs.com/shueixue/p/10953699.html
print("进行多个合并(一维数组):\n", d)

 

numpy中的array是一个多维数组,可以用于存储和处理多维数据。以下是numpyarray的常用用法: 1. 创建一个array:可以通过numpy.array()函数创建一个array,也可以通过其他numpy函数(如numpy.zeros()和numpy.ones())创建。 2. 访问和修改array中的元素:可以通过索引访问和修改array中的元素,索引从0开始。 3. 对array进行运算:可以进行基本的数学运算,如加、减、乘、除,也可以进行向量和矩阵运算,如点乘、矩阵乘法、求逆等。 4. 向array中添加元素:可以通过numpy.append()函数向array中添加元素,也可以通过numpy.concatenate()函数将两个array合并。 5. 对array进行切片操作:可以通过切片操作获取array中的某一部分,也可以修改array的某一部分。 6. 对array进行统计计算:可以使用numpy中的统计函数,如numpy.mean()、numpy.median()、numpy.std()等对array进行统计计算。 7. 对array进行排序:可以使用numpy中的排序函数,如numpy.sort()、numpy.argsort()、numpy.lexsort()等对array进行排序。 8. 对array进行形状变换:可以使用numpy中的reshape()函数对array进行形状变换,也可以使用transpose()函数对array进行转置。 9. 对array进行逻辑运算:可以使用numpy中的逻辑运算函数,如numpy.logical_and()、numpy.logical_or()、numpy.logical_not()等对array进行逻辑运算。 10. 对array进行随机数生成:可以使用numpy中的random模块生成随机数,如numpy.random.rand()、numpy.random.randn()、numpy.random.randint()等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值