Poj 2063 Investment (DP_背包)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1059


题目大意:给定一个初始资金m,然后给定n种投资方案,每种投资方案中有投资额costi和利息vali,每年的投资就可以拿到全部利息,然后累加起来继续投资利滚利。问经过k年后最多拥有多少资金?


解题思路:这题我用了两种写法来解,一种是完全背包,一种是多重背包,前一种其实十分脑残,复杂度又高又不好写,但是我一开始想到的是这个解法,糗。将资金看成容量,将利息看成价值,每次处理完价值可累加到总容量中去,问题就转变成求k次背包后的最大容量。

    状态转移方程:dp[j] = max(dp[j],dp[j-cost[i]]+val[i]) (cost[i]都是1000的倍数,可以全部除以1000,大幅度增加效率,1<=i<=n,cost[i]<=j<=m/1000).。总复杂度O(KVN)


测试数据:

3
10000 1
2
4000 400
5000 450


10000 1
2
8000 800
9000 900

代码:

//完全背包写法
#include <stdio.h>
#include <string.h>
#define MAX 110000
#define max(a,b) (a)>(b)?(a):(b)


int ans,cost[MAX],val[MAX];
int n,m,year,dp[MAX],num[MAX];


int Solve_1A(int m,int year) {

	int i,j,k,t,tpm;


	for (t = 1; t <= year; ++t) {
		//二进制处理
		tpm = m / 1000;
		memset(dp,0,sizeof(dp));
		for (i = 1; i <= n; ++i)
			for (j = cost[i]; j <= tpm; ++j)
				dp[j] = max(dp[j],dp[j-cost[i]]+val[i]);
		m = m + dp[tpm];
	}
	return m;
}


int main()
{
	int i,j,k,t;

	
	scanf("%d",&t);
	while (t--) {

		scanf("%d%d",&m,&year);
		scanf("%d",&n);
		for (i = 1; i <= n; ++i) {

			scanf("%d%d",&cost[i],&val[i]);
			cost[i] = cost[i] / 1000;	//都是1000的倍数
		}


		ans = Solve_1A(m,year);
		printf("%d\n",ans);
	}
}
//多重背包写法
#include <stdio.h>
#include <string.h>
#define MAX 110000
#define max(a,b) (a)>(b)?(a):(b)


int tpcost[MAX],tpval[MAX];
int ans,cost[MAX],val[MAX];
int n,m,year,dp[MAX],num[MAX];


int Solve_1A(int m,int year) {

	int i,j,k,t,tpm;


	for (t = 1; t <= year; ++t) {
		//二进制处理
		tpm = m / 1000;
		for (i = 1; i <= n; ++i) 
			if (cost[i] == 0) num[i] = 0;
			else num[i] = tpm / cost[i];
		for (k = 0,i = 1; i <= n; ++i) {
			
			if (num[i] == 0) continue;
			for (j = 0; (1<<j) <= num[i]; ++j) {

				num[i] = num[i] - (1<<j);
				tpcost[++k] = (1<<j) * cost[i];
				tpval[k] = (1<<j) * val[i];
			}
			tpcost[++k] = num[i] * cost[i];
			tpval[k] = num[i] * val[i];
		}

		//01背包
		memset(dp,0,sizeof(dp));
		for (i = 1; i <= k; ++i)
			for (j = tpm; j >= tpcost[i]; --j)
				dp[j] = max(dp[j],dp[j-tpcost[i]]+tpval[i]);
		m = m + dp[tpm];
	}
	return m;
}


int main()
{
	int i,j,k,t;

	
	scanf("%d",&t);
	while (t--) {

		scanf("%d%d",&m,&year);
		scanf("%d",&n);
		for (i = 1; i <= n; ++i) {

			scanf("%d%d",&cost[i],&val[i]);
			cost[i] = cost[i] / 1000;	//都是1000的倍数
		}


		ans = Solve_1A(m,year);
		printf("%d\n",ans);
	}
}

本文ZeroClock原创,但可以转载,因为我们是兄弟。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值