Hdu 2829 Lawrence (DP_四边形优化|斜率优化)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829


题目大意:给定一个长度为n的序列,至多将序列分成m段,每段序列都有权值,权值为序列内两个数两两相乘之和。m<=n<=1000.


解题思路:经典的DP优化题,可以用四边形不等式优化也可以用斜率优化,我三种方法实现,两种斜率优化,一种四边形不等式,其中复杂度都为n*m,但是常熟略有差异。

    状态转移方程很好想,dp[i][j] = min(dp[i][j],dp[k][j-1]+cost[k+1][j])(1<=k<i),这种方程普通写法是n*n*m,当n为1000时运算量为10亿级别,必须优化。

    

     第一种:四边形不等式优化,这种方法是最简单的,主要是减少枚举k的次数。cost[i][j]是某段区间的权值,当区间变大,权值也随之变大,区间变小,权值也随之变小,此时就可以用四边形不等式优化。

     我们设s[i][j]为dp[i][j]的前导状态,即dp[i][j] = dp[s[i][j][j-1] + cost[s[i][j]+1][j].之后我们枚举k的时候只要枚举s[i][j-1]<=k<=s[i+1][j],此时j必须从小到大遍历,i必须从大到小。

     用这种方法我的代码跑了140ms。


    第二种:斜率优化.其实是借鉴大牛大思路,Here,我只是抛砖引玉而已。这种方法的dp和suma数组必须为64位整数,因为平方和会超过32位整数。

    用这种方法我的代码跑了350ms。


    第三种:斜率优化.其实是借鉴大牛大思路,Here,我只是抛砖引玉而已。其实这题可以作为模板题,斜率优化大抵如此吧。

    用这种方法我的代码跑了109ms。


测试数据:

Input:
4 1
4 5 1 2
4 2
4 5 1 2
5 3
1 2 1 2 1
6 4
7 5 3 6 8 9
10 3
1 4 2 7 5 6 8 5 6 9

OutPut:
17
2
92
15
187


C艹代码:

//四边形不等式
#include <stdio.h>
#include <string.h>
#define MAX 1100
#define INF (1<<30)


int n,m,sum[MAX],cost[MAX][MAX];
int arr[MAX],dp[MAX][MAX],s[MAX][MAX];


void Initial() {

    int i, j, k;


    for (i = 1; i <= n; ++i)
        for (j = 1; j <= n; ++j)
            if (j < i) cost[i][j] = 0;
            else cost[i][j] = cost[i][j - 1] + arr[j] * (sum[j - 1] - sum[i - 1]);
    for (i = 0; i <= n; ++i) {

        dp[i][0] = cost[1][i];
        s[i][0] = 0,s[n+1][i] = n;
    }
}
int Solve_DP() {

    int i,j,k;


    for (j = 1; j <= m; ++j)
        for (i = n; i >= 1; --i) {

            dp[i][j] = INF;
            for (k = s[i][j-1] ; k <= s[i+1][j]; ++k)
                if (dp[k][j-1] + cost[k+1][i] < dp[i][j]) {

                    s[i][j] = k;
                    dp[i][j] = dp[k][j-1] + cost[k+1][i];
                }
        }


    return dp[n][m];
}


int main()
{
    int i,j,k;


    while (scanf("%d%d",&n,&m),n+m) {

        for (i = 1; i <= n; ++i)
            scanf("%d",&arr[i]),sum[i] = arr[i] + sum[i-1];


        Initial();
        int ans = Solve_DP();
        printf("%I64d\n",ans);
    }
}

//sum[i] = arr[1] + .. arr[i]^2
//sum2[i] = arr[1]^2 + .. arr[i]^2;
//dp[i][j] = min{dp[k][j-1] -sum[i] * sum[k] + (suma[k] - sum[k]^2)/2 + (sum[k]^2 - suma[k])/2};
//斜率优化二
#include <stdio.h>
#include <string.h>
#define MAX 1100
#define INF (1<<30)
#define int64 __int64//long long


struct point {

    int64 x,y;
}pot[MAX];
int head,tail,qu[MAX];
int n,m,arr[MAX];
int64 sum[MAX],sum2[MAX],dp[MAX][MAX];


void Initial() {

    for (int i = 1; i <= n; ++i) {

        sum[i] = arr[i] + sum[i-1];
        sum2[i] = arr[i] * arr[i] + sum2[i-1];
        dp[i][0] = dp[i-1][0] + arr[i] * sum[i-1];
    }
}
int CheckIt(point p0,point p1,point p2) {

    return (p0.x-p1.x) * (p0.y-p2.y) - (p0.y-p1.y) * (p0.x-p2.x) <= 0;
}
int NotBest(point p0,point p1,int k) {

    return p0.y - k * p0.x > p1.y - k * p1.x;
}
int Solve_DP() {

    int i,j,k;


    for (j = 1; j <= m; ++j) {

        head = 0,tail = 0;
        qu[tail] = 0;
        for (i = j + 1; i <= n; ++i) {

            pot[i].x = sum[i-1];
            pot[i].y = dp[i-1][j-1] + (sum[i-1] * sum[i-1] + sum2[i-1]) / 2;
            while (head <= tail - 1 &&
                    CheckIt(pot[qu[tail-1]],pot[qu[tail]],pot[i])) tail--;


            qu[++tail] = i;
            while (head + 1 <= tail &&
                    NotBest(pot[qu[head]],pot[qu[head+1]],sum[i])) head++;
            k = qu[head];
            //dp[i][j] = y - k * x + c
            dp[i][j] = pot[k].y - sum[i] * pot[k].x + (sum[i] * sum[i] - sum2[i]) / 2;
        }
    }


    return dp[n][m];
}
int GetInt() {

    char ch = ' ';
    while (ch < '0' || ch > '9')
        ch = getchar();
    int x = 0;
    while (ch >= '0' && ch <= '9')
        x = x * 10 + ch - '0',ch = getchar();
    return x;
}


int main()
{
    int i,j,k;


    while (scanf("%d%d",&n,&m),n+m) {

        for (i = 1; i <= n; ++i)
            scanf("%d",&arr[i]),sum[i] = arr[i] + sum[i-1];


        Initial();
        int ans = Solve_DP();
        printf("%d\n",ans);
    }
}


//cost[k+1][i]=cost[1][i]-cost[1][k]-sum[k]*(sum[i]-sum[k])
//dp[i][j]=dp[k][j-1]+cost[1][i]-cost[1][k]-sum[k]*(sum[i]-sum[k])
//        =dp[k][j-1]-cost[1][k]+sum[k]^2-sum[i]*sum[k]+cost[1][i]
//斜率优化一 
#include <stdio.h>
#include <string.h>
#define MAX 1100
#define INF (1<<30)


struct point {

    int x,y;
}pot[MAX];
int head,tail,qu[MAX];
int n,m,arr[MAX],cost[MAX];
int sum[MAX],sum2[MAX],dp[MAX][MAX];


void Initial() {

    for (int i = 1; i <= n; ++i) {

        sum[i] = arr[i] + sum[i-1];
        cost[i] = cost[i-1] + arr[i] * sum[i-1];
        dp[i][0] = cost[i];
    }
}
int CheckIt(point p0,point p1,point p2) {

    return (p0.x-p1.x) * (p0.y-p2.y) - (p0.y-p1.y) * (p0.x-p2.x) <= 0;
}
int NotBest(point p0,point p1,int k) {

    return p0.y - k * p0.x > p1.y - k * p1.x;
}
int Solve_DP() {

    int i,j,k;


    for (j = 1; j <= m; ++j) {

        head = 0,tail = 0;
        qu[tail] = 0;
        for (i = j + 1; i <= n; ++i) {

            pot[i].x = sum[i-1];
            pot[i].y = dp[i-1][j-1] - cost[i-1] + sum[i-1] * sum[i-1];
            while (head <= tail - 1 &&
                    CheckIt(pot[qu[tail-1]],pot[qu[tail]],pot[i])) tail--;


            qu[++tail] = i;
            while (head + 1 <= tail &&
                    NotBest(pot[qu[head]],pot[qu[head+1]],sum[i])) head++;
            k = qu[head];
            //dp[i][j] = y - k * x + c
            dp[i][j] = pot[k].y - sum[i] * pot[k].x + cost[i];
        }
    }


    return dp[n][m];
}


int main()
{
    int i,j,k;


    while (scanf("%d%d",&n,&m),n+m) {

        for (i = 1; i <= n; ++i)
            scanf("%d",&arr[i]),sum[i] = arr[i] + sum[i-1];


        Initial();
        int ans = Solve_DP();
        printf("%d\n",ans);
    }
}


本文ZeroClock原创,但可以转载,因为我们是兄弟。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值