题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4085
题目大意:一个村庄有n幢房子,m条通道连接着这n幢房子,修建通道都有特定的花费。在1..k幢房子里面住有人,现在道路被破坏了却要让这些人顺利跑到n-k+1,n-k+2...n里面,问最少需要花费多少money来修复这些道路。
Input:
10
4 3 2
1 2 3
2 3 4
3 4 5
4 3 1
4 2 10
3 1 9
2 3 10
6 7 2
1 5 1000
2 6 1000
1 3 1
2 3 1
3 4 1
4 5 1
4 6 1
OutPut:
12
29
5
题目大意:一个村庄有n幢房子,m条通道连接着这n幢房子,修建通道都有特定的花费。在1..k幢房子里面住有人,现在道路被破坏了却要让这些人顺利跑到n-k+1,n-k+2...n里面,问最少需要花费多少money来修复这些道路。
解题思路:11年北京现场赛的题目,经典的斯坦纳树。
斯坦纳树简称STNT是一种数据结构,是生成树的一个子集。这种数据结构出现的并不多,模型一般是固定的,就是求一个图中至少包含指定k个点的最小生成树。从11年开始,区域赛、浙大月赛已经出现好几道了。今天花了些时间学习这个,倒也略懂一些。
STNT的求法为状态压缩DP+Spfa。用二进制表示集合的状态,有两类转移,一种是集合内的更新类似Spfa的松弛,也就用Spfa来进行这类转移,第二类是集合间的合并更新。就是通过这样的转移最后得到一个最优的至少含k个点的集合。
具体的实现我都参照这个博客: Here,请大家移步这里。
Input:
10
4 3 2
1 2 3
2 3 4
3 4 5
4 3 1
4 2 10
3 1 9
2 3 10
6 7 2
1 5 1000
2 6 1000
1 3 1
2 3 1
3 4 1
4 5 1
4 6 1
OutPut:
12
29
5
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
#define MAX 1200
#define INF (1<<29)
#define min(a,b) ((a)<(b)?(a):(b))
struct node {
int v,len;
node *next;
}*head[MAX*2],tree[MAX*2];
queue<int> qu;
bool in[100][MAX];
int cost[100][MAX],dp[MAX];
int n,nn,m,k,ptr,ans,st[MAX];
void Initial() {
ptr = 0,nn = 1<<(2*k);
memset(st,0,sizeof(st));
memset(in,0,sizeof(in));
memset(head,NULL,sizeof(head));
for (int j = 0; j < n; ++j)
for (int i = 0; i < nn; ++i)
cost[j][i] = INF;
for (int i = 0; i < k; ++i) {
st[i] = 1<<i,cost[i][st[i]] = 0;
st[n-k+i] = 1<<(i+k),cost[n-k+i][st[n-k+i]] = 0;//把n-k+i映射到i+k,这样保证状态不超过2^(2*k)
}
}
void AddEdge(int a,int b,int c) {
tree[ptr].v = b,tree[ptr].len = c;
tree[ptr].next = head[a],head[a] = &tree[ptr++];
}
void Spfa() {
while (!qu.empty()) {
int j = qu.front() / MAX;
int i = qu.front() % MAX;
qu.pop(),in[j][i] = false;
node *p = head[j];
while (p != NULL) {
int v = p->v,nst = i | st[v];
if (cost[j][i] + p->len < cost[v][nst]) {
cost[v][nst] = cost[j][i] + p->len;
if (nst == i && !in[v][nst]) {
in[v][nst] = true;
qu.push(v * MAX + nst);
}
}
p = p->next;
}
}
}
void Steiner_Tree() {
int i,j,t,s;
for (i = 0; i < nn; ++i) {
for (j = 0; j < n; ++j) {
for (t = (i - 1) & i; t; t = (t-1) & i)
cost[j][i] = min(cost[j][i],cost[j][t|st[j]]+cost[j][(i-t)|st[j]]);
if (cost[j][i] < INF) qu.push(j * MAX + i),in[j][i] = true;
}
Spfa();
}
}
int Check(int s) {
int i,cnt = 0;
for (i = 0; i < k; ++i){
if (s & (1 << i)) cnt++;
if (s & (1 << k + i)) cnt--;
}
return cnt == 0;
}
int Solve_DP() {
int i,j,t;
for (i = 0; i < nn; ++i) {
dp[i] = INF;
for (j = 0; j < n; ++j)
dp[i] = min(dp[i],cost[j][i]);
}
for (i = 1; i < nn; ++i)
if (Check(i)) for (j = (i-1)&i; j; j = (j-1) & i)
if (Check(j)) dp[i] = min(dp[i],dp[j] + dp[i-j]);
return dp[nn-1];
}
int main()
{
int i,j,t,a,b,c;
scanf("%d",&t);
while (t--) {
scanf("%d%d%d",&n,&m,&k);
Initial();
for (i = 0; i < m; ++i) {
scanf("%d%d%d",&a,&b,&c);
a--,b--;
AddEdge(a,b,c);
AddEdge(b,a,c);
}
Steiner_Tree();
ans = Solve_DP();
if (ans < INF) printf("%d\n",ans);
else printf("No solution\n");
}
}
本文ZeroClock原创,但可以转载,因为我们是兄弟。