Hdu 4085 Peach Blossom Spring (综合_斯坦纳树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4085

题目大意:一个村庄有n幢房子,m条通道连接着这n幢房子,修建通道都有特定的花费。在1..k幢房子里面住有人,现在道路被破坏了却要让这些人顺利跑到n-k+1,n-k+2...n里面,问最少需要花费多少money来修复这些道路。

解题思路:11年北京现场赛的题目,经典的斯坦纳树。

      斯坦纳树简称STNT是一种数据结构,是生成树的一个子集。这种数据结构出现的并不多,模型一般是固定的,就是求一个图中至少包含指定k个点的最小生成树。从11年开始,区域赛、浙大月赛已经出现好几道了。今天花了些时间学习这个,倒也略懂一些。

      STNT的求法为状态压缩DP+Spfa。用二进制表示集合的状态,有两类转移,一种是集合内的更新类似Spfa的松弛,也就用Spfa来进行这类转移,第二类是集合间的合并更新。就是通过这样的转移最后得到一个最优的至少含k个点的集合。

     具体的实现我都参照这个博客: Here,请大家移步这里。


测试数据:
Input:
10
4 3 2
1 2 3
2 3 4
3 4 5

4 3 1
4 2 10
3 1 9
2 3 10

6 7 2
1 5 1000
2 6 1000
1 3 1
2 3 1
3 4 1
4 5 1
4 6 1

OutPut:
12
29
5


代码:
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
#define MAX 1200
#define INF (1<<29)
#define min(a,b) ((a)<(b)?(a):(b))


struct node {
    
    int v,len;
    node *next;
}*head[MAX*2],tree[MAX*2];
queue<int> qu;
bool in[100][MAX];
int cost[100][MAX],dp[MAX];
int n,nn,m,k,ptr,ans,st[MAX];


void Initial() {
    
    ptr = 0,nn = 1<<(2*k);
    memset(st,0,sizeof(st));
    memset(in,0,sizeof(in));
    memset(head,NULL,sizeof(head));
    for (int j = 0; j < n; ++j)
        for (int i = 0; i < nn; ++i)
            cost[j][i] = INF;
    for (int i = 0; i < k; ++i) {

        st[i] = 1<<i,cost[i][st[i]] = 0;
        st[n-k+i] = 1<<(i+k),cost[n-k+i][st[n-k+i]] = 0;//把n-k+i映射到i+k,这样保证状态不超过2^(2*k)
    }  
}
void AddEdge(int a,int b,int c) {
    
    tree[ptr].v = b,tree[ptr].len = c;
    tree[ptr].next = head[a],head[a] = &tree[ptr++];
}
void Spfa() {

    while (!qu.empty()) {
        
        int j = qu.front() / MAX;
        int i = qu.front() % MAX;
        qu.pop(),in[j][i] = false;
        
        
        node *p = head[j];
        while (p != NULL) {

            int v = p->v,nst = i | st[v];
            if (cost[j][i] + p->len < cost[v][nst]) {

                cost[v][nst] = cost[j][i] + p->len;
                if (nst == i && !in[v][nst]) {

                    in[v][nst] = true;
                    qu.push(v * MAX + nst);
                }
            }
            p = p->next;
        }
    }
}
void Steiner_Tree() {
    
    int i,j,t,s;
    
    
    for (i = 0; i < nn; ++i) {
     
        for (j = 0; j < n; ++j) {
        
            for (t = (i - 1) & i; t; t = (t-1) & i)
                cost[j][i] = min(cost[j][i],cost[j][t|st[j]]+cost[j][(i-t)|st[j]]);
            if (cost[j][i] < INF) qu.push(j * MAX + i),in[j][i] = true;
        }
       Spfa();
    }
}
int Check(int s) {

    int i,cnt = 0;
    for (i = 0; i < k; ++i){
     
        if (s & (1 << i)) cnt++;
        if (s & (1 << k + i)) cnt--;
    }
    return cnt == 0;
}
int Solve_DP() {
    
    int i,j,t;
    
    
    for (i = 0; i < nn; ++i) {
     
        dp[i] = INF;
        for (j = 0; j < n; ++j)
            dp[i] = min(dp[i],cost[j][i]);
    }
    for (i = 1; i < nn; ++i)
        if (Check(i)) for (j = (i-1)&i; j; j = (j-1) & i)
            if (Check(j)) dp[i] = min(dp[i],dp[j] + dp[i-j]);
    return dp[nn-1];
}

int main()
{
    int i,j,t,a,b,c;
    
    
    scanf("%d",&t);
    while (t--) {
        
        scanf("%d%d%d",&n,&m,&k);
        Initial();
        for (i = 0; i < m; ++i) {
            
            scanf("%d%d%d",&a,&b,&c);
            a--,b--;
            AddEdge(a,b,c);
            AddEdge(b,a,c);
        }
        

        Steiner_Tree();
        ans = Solve_DP();
        if (ans < INF) printf("%d\n",ans);
        else printf("No solution\n");
    }
}


本文ZeroClock原创,但可以转载,因为我们是兄弟。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值