使用PyTorch+OpenCV进行人脸识别(附代码演练)

本文介绍如何构建一个人脸识别系统,通过OpenCV的预训练Haar Cascade分类器进行人脸检测,并利用预训练的InceptionResnetV1模型进行人脸匹配。系统将图像数据集划分为训练和验证集,应用数据增强,并最终评估和保存模型。
摘要由CSDN通过智能技术生成

人脸识别是一种用于从图像或视频中识别人脸的系统。它在许多应用程序和垂直行业中很有用。如今,我们看到这项技术可帮助新闻机构在重大事件报道中识别名人,为移动应用程序提供二次身份验证,为媒体和娱乐公司自动索引图像和视频文件,允许人道主义团体识别和营救人口贩卖受害者。

在这个博客中,我尝试构建一个人脸识别系统,该系统将一个人的图像与数据集中的护照大小的照片相匹配,并输出该图像是否匹配。

该系统可分为以下部分:人脸检测和人脸分类器

人脸检测

首先,将加载包含护照尺寸的图像和自拍照的数据集。然后将其分为训练数据和验证数据。

pip install split-folders

该库有助于将数据集划分为训练,测试和验证数据。

import splitfolders
splitfolders.ratio('dataset', output="/data", seed=1337, ratio=(.8, 0.2))

这将创建一个包含训练和有效子文件夹的数据目录,将数据集分别划分为80%训练集和20%验证集。

现在,我们将尝试从图像中提取人脸。为此,我将OpenCV的预训练Haar Cascade分类器用于人脸。

首先,我们需要加载haarcascade_frontalface_default XML分类器。然后以灰度模式加载我们的输入图像(或视频)。如果找到人脸,则将检测到的人脸的位置返回为Rect(x,y,w,h)。然后,将这些位置用于为人脸创建ROI。

import fnmatch
import os
from matplotlib import pyplot as plt
import cv2

# Load the cascade
face_cascade = cv2.CascadeClassifier('/haarcascade_frontalface_default.xml')

paths="/data/"


for root,_,files in os.walk(paths):
    for filename in files: 
        file = os.path.join(root,filename)
        if fnmatch.fnmatch(file,'*.jpg'):
            
            img = cv2.imread(file)        
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # Detect faces
            faces = face_cascade.detectMultiScale(gray, 1.1, 4)
            # Draw rectangle around the faces
            for (x, y, w, h) in faces:
              crop_face = img[y:y+h, x:x+w]
            path = os.path.join(root,filename)
            cv2.imwrite(path,crop_face)

这会将目录中的所有图像替换为图像中检测到的人脸。分类器的数据准备部分现已完成。

现在,我们将加载该数据集。

from torch import nn, optim, as_tensor
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torch.optim import lr_scheduler
from torch.nn.init import *
from torchvision import transforms, utils, datasets, models
import cv2
from PIL import Image
from pdb import set_trace
import time
import copy
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值