介绍
从本文中,你将学习如何使用 Deep Q-Network 和 Double Deep Q-Network(带代码!)玩超级马里奥兄弟。
超级马里奥是任天堂在 1980 年代开发和发行的著名游戏。它是历经多年无需解释的经典游戏名称之一。这是一款2D横向卷轴游戏,让玩家可以控制主角——马里奥。
游戏玩法包括从左到右移动马里奥,从反派中生存下来,获得硬币,以及到达旗帜以清除关卡。马里奥最终需要拯救公主。这些有不同的奖励系统、硬币、反派、漏洞和完成时间。
游戏环境取自 OpenAI Gym,使用 Nintendo Entertainment System (NES) python 模拟器。在本文中,我将展示如何使用深度 Q 网络 (DQN) 和深度双 Q 网络 (DDQN) 算法和PyTorch 库来实现强化学习算法,以检查它们各自的性能。然后评估对每种算法进行的实验。
数据理解和预处理
超级马里奥兄弟的原始观察空间是 240 x 256 x 3 的 RGB 图像。动作空间是 256,这意味着能够采取 256 种不同的可能动作。为了加快我们模型的训练时间,我们使用了gym的包装器函数对原始环境应用了某些转换:
在 4 帧上重复代理的每个动作并减小视频帧大小,即环境中的每个状态都是 4 x 84 x 84 x 1(4 个连续 84 x 84 灰度像素帧的列表)
将像素值归一化到 0 到 1 的范围内
将动作次数减少到 5(仅右)、7(简单动作)和 12(复杂动作)
理论结果
最初,我想使用 Q-learning 执行一个实验,该实验使用二维数组来存储状态和动作对值的所有可能组合。但是,在这种环境设置中,我意识到应用 Q-learning 是不可能的,因为需要存储非常大的 Q-table, 而这是不可行的。
因此,本项目使用 DQN 算法作为基线模型。DQN 算法使用 Q-learning 来学习在给定状态下采取的最佳动作,并使用深度神经网络来估计 Q 值函数。
我使用的深度神经网络类型是一个 3 层卷积神经网络,后跟两个完全连接的线性层,每个可能的动作都有一个输出。该网络的工作原理类似于 Q-Learning 算法中的 Q-table。我们使用的目标损失函数是 Huber 损失或 Q 值的平滑平均绝对误差。Huber loss 结合了 MSE 和 MAE 来最小化目标函数。我们用来优化目标函数的优化器是 Adam。
但是,DQN 网络存在高估的问题。
图 1:说明 DQN 网络如何被高估
如图1所示,高估的主要原因有两个。第一个原因是由于用于计算目标值的最大化函数。假设action值为True, 表示为:x(a₁) … x(aₙ)。由 DQN 做出的噪声估计由 Q(s,a₁;w), ... Q(s, aₙ;w) 表示,在数学上,
因此它高估了真实的 Q 值。
第二个原因是高估的 Q 值再次被用于通过反向传播更新 Q 网络的权重。这使得高估更加严重。
高估的主要缺点是由于 DQN 所做的非均匀高估。直观的感觉是,一个特定的状态、操作对在重放缓冲区中出现的频率越高,对该状态-操作对的高估就越高。
为了获得更准确的 Q 值,我们想在我们的问题上使用 DDQN 网络,然后将实验结果与之前的 DQN 网络进行比较。为了减轻由最大化引起的高估,DDQN 使用 2 个 Q 网络,一个用于获取动作,另一个用于通过反向传播更新权重。DDQN Q-learning更新方程为:
Q* 用于更新权重,Q^ 用于获取特定状态的动作。Q^ 只是每 n 步复制 Q* 的值。
实验结果
使用 2 种算法 DQN 和 DDQN,基于智能体的不同运动进行了 5 次实验。不同的动作是复杂动作、简单动作和仅右动作。
参数设置如下:
观察空间:4 x 84 x 84 x 1
动作空间:12(复杂动作)或7(简单动作)或5(仅右动作)
损失函数:HuberLoss,δ = 1
优化器:Adam,lr = 0.00025
betas = (0.9, 0.999)
批大小 = 64 Dropout = 0.2
gamma = 0.9
体验回放的最大内存大小 = 30000
对于 epsilon greedy:探索衰减 = 0.99,探索最小值 = 0.05
在探索开始时,max = 1,代理将采取随机动作。在每一次动作之后,它将以探索衰减率衰减,直到达到 0.05 的探索最小值。
实验一
进行的第一个实验是比较 DDQN 和 DQN 算法用于智能体的复杂运动。
实验二
进行的第二个实验是比较 DDQN 和 DQN 算法对于智能体的简单移动。
实验三
进行的第三个实验是比较 DDQN 和 DQN 算法仅适用于代理的右运动。
从以上 3 个实验结果可以看出,在所有情况下,DQN 在第 10,000 集的性能与 DDQN 在第 2,000 集的性能大致相同。因此,我们可以得出结论,DDQN 网络有助于消除由 DQN 网络引起的高估问题。
使用 DDQN 和 DQN 对 3 种不同运动进行了进一步的实验。
实验四
进行的第四个实验是在所有 3 个不同的动作上使用 DDQN 算法。
实验五
进行的第五个实验是对所有 3 个不同的动作使用 DQN 算法