使用 YOLO 进行目标检测:如何提取人物图像

本文介绍了如何利用YOLO模型进行目标检测,提取图像中的人物。首先通过pip安装YOLO相关库,下载预训练权重和配置文件。接着加载模型,处理图像,执行前向传播以检测人物并绘制边界框。通过NMS去除重复矩形,并添加标签。最后,可以计算图像中人物的数量。
摘要由CSDN通过智能技术生成

YOLO(You Only Look Once)是一种流行的用于对象检测的开源神经网络模型。在这篇文章中,我们将解释如何使用 YOLO 提取一堆人(或至少一个人)的图像。

首先,我们需要安装 YOLO 库和依赖项。为此,我们将使用 pip 包管理器并安装以下库:

pip install numpy
pip install opencv-python
pip install tensorflow
pip install keras

接下来我们从官网下载预训练好的YOLO权重和配置文件。这些文件可以在https://pjreddie.com/darknet/yolo/找到。

一旦我们有了权重和配置文件,我们就可以使用它们对我们的图像执行对象检测。

以下是如何使用 YOLO 检测图像中人物的示例:

import cv2
import numpy as np

# Load YOLO model
net = cv2.dnn.readNet("./yolov3.weights", "./darknet/cfg/yolov3.cfg")

# Define input image
image = cv2.imread("image.jpg")

# Get image dimensions
(height, width) = image.shape[:2]

# Define the neural network input
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInpu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值