YOLO(You Only Look Once)是一种流行的用于对象检测的开源神经网络模型。在这篇文章中,我们将解释如何使用 YOLO 提取一堆人(或至少一个人)的图像。
首先,我们需要安装 YOLO 库和依赖项。为此,我们将使用 pip 包管理器并安装以下库:
pip install numpy
pip install opencv-python
pip install tensorflow
pip install keras
接下来我们从官网下载预训练好的YOLO权重和配置文件。这些文件可以在https://pjreddie.com/darknet/yolo/找到。
一旦我们有了权重和配置文件,我们就可以使用它们对我们的图像执行对象检测。
以下是如何使用 YOLO 检测图像中人物的示例:
import cv2
import numpy as np
# Load YOLO model
net = cv2.dnn.readNet("./yolov3.weights", "./darknet/cfg/yolov3.cfg")
# Define input image
image = cv2.imread("image.jpg")
# Get image dimensions
(height, width) = image.shape[:2]
# Define the neural network input
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInpu