正如我们在之前的文章中讨论的那样,当我们处理帧时,存在较大的性能成本,并且这些成本在并行流 / 流水线处理中还会成倍增长。
CPU、GPU 和 DSP 这样的资源可以利用框架的重新处理能力,但是像内存这样的资源需求将线性增长。
每次请求对应多个目标
通过执行某种官方程序,多相机流可以整合成一个 CaptureRequest,此代码段表明了如何使用一个流开启相机会话进行相机预览并使用另一个流进行图像处理:
val session: CameraCaptureSession = … // from CameraCaptureSession.StateCallback
// 我们将使用预览捕获模板来组合流,因为
// 它针对低延迟进行了优化; 用于高质量的图像时使用
// TEMPLATE_STILL_CAPTURE,用于高速和稳定的帧速率时使用
// TEMPLATE_RECORD
val requestTemplate = CameraDevice.TEMPLATE_PREVIEW
val combinedRequest = session.device.createCaptureRequest(requestTemplate)
// Link the Surface targets with the combined request
combinedRequest.addTarget(previewSurface)
combinedRequest.addTarget(imReaderSurface)
// 在我们的样例中,SurfaceView 会自动更新。
// ImageReader 有自己的回调,我们必须监听,以检索帧
// 所以不需要为捕获请求设置回调
session.setRepeatingRequest(combinedRequest.build(), null, null)
如果你正确配置了目标 surfaces,则此代码将仅生成满足 StreamComfigurationMap.GetOutputMinFrameDuration(int, Size) 和 StreamComfigurationMap.GetOutputStallDuration(int, Size) 确定的最小 FPS 流。实际表现还会因机型而异,Android 给了我们一些保证,可以根据输出类型,输出大小和硬件级别三个变量来支持特定组合。使用不支