语言模型与数据集

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为T的词的序列w1,w2,…,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P(w1,w2,…,wT).
本节我们介绍基于统计的语言模型,主要是n元语法(n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型
假设序列w1,w2,…,wT中的每个词是依次生成的,我们有

P(w1,w2,…,wT)=∏t=1TP(wt∣w1,…,wt−1)=P(w1)P(w2∣w1)⋯P(wT∣w1w2⋯wT−1)
例如,一段含有4个词的文本序列的概率

P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w1,w2,w3).
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w1的概率可以计算为:

P^(w1)=n(w1)n
其中n(w1)为语料库中以w1作为第一个词的文本的数量,n为语料库中文本的总数量。

类似的,给定w1情况下,w2的条件概率可以计算为:

P^(w2∣w1)=n(w1,w2)n(w1)
其中n(w1,w2)为语料库中以w1作为第一个词,w2作为第二个词的文本的数量。

n元语法
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面n个词相关,即n阶马尔可夫链(Markov chain of order n),如果n=1,那么有P(w3∣w1,w2)=P(w3∣w2)。基于n−1阶马尔可夫链,我们可以将语言模型改写为

P(w1,w2,…,wT)=∏t=1TP(wt∣wt−(n−1),…,wt−1).
以上也叫n元语法(n-grams),它是基于n−1阶马尔可夫链的概率语言模型。例如,当n=2时,含有4个词的文本序列的概率就可以改写为:

P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w1,w2,w3)=P(w1)P(w2∣w1)P(w3∣w2)P(w4∣w3)
当n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列w1,w2,w3,w4在一元语法、二元语法和三元语法中的概率分别为

P(w1,w2,w3,w4)=P(w1)P(w2)P(w3)P(w4),P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w2)P(w4∣w3),P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w2,w3).
当n较小时,n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当n较大时,n元语法需要计算并存储大量的词频和多词相邻频率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值