Head Pose Estimation头部姿态估计任务的基本了解:从数据集开始



前言

为了检测司机的疲劳状态,除了基于人脸关键点的检测去判断是否闭眼,是否打哈欠,还可以基于头部的姿态取判断是否正视前方,或者低头睡觉.那么准确的头部姿态估计,必不可少.此前,我们基于PnP算法取估计HPE,但误差较大.因此,我们决定在YOLOLandmark基础上添加额外的任务,即人脸检测,人脸关键点检测以及头部姿态检测,三个任务整合到一起.


一、HPE是什么?

Head Pose Estimation,即头部姿态估计,一般用6D元素表示,即空间坐标(x,y,z),空间旋转角度(yaw, roll, pitch)等来表示.有些时候空间位置可在二维图像中定位出bounding-box的二维坐标即可,主要是空间旋转角度的估计是一个关键问题.

这个问题,难点在哪里?
单一的HPE任务,已经是个old任务,通常做法是cropped face输入到ResNet,然后设计一个head估计三个角度.因此,单一的任务在标准的数据集上做训练,这不是一个难的问题.

如果将三个task整合到一起,就会遇到问题.没有完整的数据集同时满足这三个任务的训练,比如,dataA提供来人脸关键点的标注适合人脸检测和人脸关键点检测,dataB提供人脸关键点和姿态的标注,适合关键点与姿态的检测.如果设计一个网络,同时能够单阶段的把三个任务完成,这件事情目前还没有人这么做.

二、常用数据集

1.COFW

原地址下载:caltech
这个数据集主要是包含人脸遮挡的数据集,如下所示:
在这里插入图片描述
所以它并不包含head pose的信息.每张人脸包含29个关键点的标注信息

2.WFLW

Wider Facial Landmarks in-the-wild (WFLW)包含10000张人脸,7500张用于训练,2500张用于测试.每个人脸包含98个人工标记点.此外,除来关键点的标记,还包括来丰富的背景,例如遮挡,大角度,化妆,照明,模糊和表情等用于当前有竞争力的算法去充分的分析.

data sit: LAB

该数据集主要用于验证算法在复杂背景下FLD的鲁棒性.

3.AFLW2000-3D

AFLW2000-3D is a dataset of 2000 images that have been annotated with image-level 68-point 3D facial landmarks. This dataset is used for evaluation of 3D facial landmark detection models. The head poses are very diverse and often hard to be detected by a CNN-based face detector.

下载链接:3dffa

samples:

在这里插入图片描述
这个数据集提供来丰富的3DMMA信息,即3D Face Landmarks, Head Pose等信息.
因此,该数据集可用于head pose的评估,但该数据集包含了大角度的偏转,会对我们的检测器提出漏检的挑战.

4.300W-LP

同样,该数据集也是由3dffa团队提出来的,也是基于3dmma的模型提供FLD和Posture的标注.

该处使用的url网络请求的数据。


三、SOTA work

CVPR2022:SynergyNet

code:github
该网络基于3DMM实现来多个人脸相关任务比如3D FLD, Angle, mesh等任务的实现,比3DFFA,青出于蓝而胜于蓝.

在AFLW3000-3D上的人脸角度估计(MAE欧拉角)
在这里插入图片描述

CVPR2021 Workshop:ASMNet

code:github

FLD的检测效果一般,目前不如我的模型角度高
角度估计demo:
在这里插入图片描述
在WFLW和300W数据集上的Posture性能对比,这里必须说明的是,他们是采用HopeNet去检测这两个数据集,并把检测的结果作为GT,用来训练此模型.
在这里插入图片描述

四、我们想做的贡献

首次基于YOLO实现三个任务的联合检测,即FD, FLD,HPE.这是首次实现.
其次,我们解决来数据集不完备带来的训练问题,我们首先冻结HPE,在A数据集上实现来FD,FLD的联合任务;然后冻结FD,FLD,实现HPE的训练.在训练阶段分步进行,在推理阶段一次搞定.
我们在多个数据集上进行了验证,在人脸检测,FLD和HPE上都取得来不错的性能.包括速度和精度的双提升.
并且,为了将基于单帧的检测用于视频检测,特别是人脸tracking过程中会存在跳帧的问题,为此,我们设计了基于Kalman Filter的平滑滤波,以减少抖动.

<think>嗯,用户想了解姿态估计的实现方法和算法介绍。首先,我需要回顾一下姿态估计基本概念,然后分清楚不同的方法类别。根据用户提供的引用[1],姿态估计算法大致分为两类:基于2D标定信息和3D模型的优化方法,以及数据驱动的回归方法。 首先,基于2D到3D的方法,比如SolvePnP,需要先检测人脸的关键点,比如使用深度学习模型如Dlib或MTCNN。然后,这些2D关键点与预定义的3D模型进行匹配,通过优化算法计算旋转和平移矩阵。这部分可能需要解释PnP问题的原理,以及如何利用OpenCV中的函数来实现。 然后是数据驱动的方法,比如使用卷积神经网络直接回归欧拉角或旋转矩阵。这种方法需要大量的标注数据,可能涉及到不同的网络结构,如简单的CNN或更复杂的架构。需要提到一些具体的例子,比如DeepHeadPose或Hopenet,以及它们的效果。 接下来,实现步骤部分需要详细说明两种方法的流程,包括关键点检测、模型匹配、优化求解,以及数据准备、模型训练和预测。可能需要给出一些代码示例,比如使用OpenCV的SolvePnP或者PyTorch构建回归模型。 用户可能还关心如何评估姿态估计的准确性,比如平均误差或成功率的指标。此外,应用场景如虚拟现实、驾驶员监控系统也是重要的点。 最后,生成相关问题时,要考虑用户可能想深入的方向,比如关键点检测算法、SolvePnP的具体原理、数据驱动的优缺点、3D模型构建方法,以及实际应用中的挑战。确保问题覆盖了用户可能感兴趣的各个方面,帮助他们进一步探索。</think>### 姿态估计算法实现方法 姿态估计Pose Estimation)的目标是通过图像或视频数据推断目标物体或人体的空间姿态(旋转角、平移向量等)。以下是两类主流方法及实现步骤: --- #### 一、基于2D标定与3D模型的优化方法 **核心思想**:利用2D关键点与预定义3D模型的对应关系,通过几何优化求解姿态参数。 **步骤**: 1. **关键点检测**: 使用深度学习模型(如Dlib、MTCNN、HRNet等)检测人脸/物体的2D关键点。例如,人脸姿态估计需检测眼睛、鼻尖、嘴角等特征点。 2. **3D模型匹配**: 定义与目标物体匹配的3D参考模型(如平均人脸模型)。例如,标准3D人脸模型可能包含鼻尖坐标为$(0,0,0)$,两眼间距为$d$等。 3. **求解位姿变换**: 通过**Perspective-n-Point (PnP)** 算法求解旋转矩阵$R$和平移向量$t$,最小化重投影误差: $$ \min_{R,t} \sum_{i} \| \text{Proj}(R \cdot P_i + t) - p_i \|^2 $$ 其中$P_i$为3D模型点,$p_i$为对应的2D图像点,`Proj`为相机投影函数。OpenCV中可直接调用`cv2.solvePnP`实现[^1]。 **代码示例**: ```python import cv2 # 假设已知3D模型点、2D图像点和相机内参矩阵K success, rvec, tvec = cv2.solvePnP( object_points_3d, image_points_2d, K, None ) # 将旋转向量转换为欧拉角 rotation_matrix, _ = cv2.Rodrigues(rvec) ``` --- #### 二、数据驱动的回归方法 **核心思想**:直接通过深度学习模型从输入图像回归姿态参数(如欧拉角、四元数)。 **实现步骤**: 1. **数据准备**: 收集带有姿态标签(如yaw, pitch, roll角度)的数据集(如AFLW、BIWI)。 2. **模型设计**: 构建卷积神经网络(CNN),输出层为姿态参数。例如: - **DeepHeadPose**:使用ResNet主干网络,输出3个欧拉角 - **Hopenet**:结合分类与回归,提升角度预测鲁棒性 3. **训练与预测**: 损失函数通常采用均方误差(MSE)或几何感知损失。 **代码框架**: ```python import torch import torch.nn as nn class PoseRegression(nn.Module): def __init__(self): super().__init__() self.backbone = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True) self.fc = nn.Linear(1000, 3) # 输出yaw, pitch, roll def forward(self, x): features = self.backbone(x) angles = self.fc(features) return angles ``` --- #### 三、评估与应用场景 - **评估指标**:平均角度误差(MAE)、成功率(预测角度与真值差小于阈值) - **典型应用**: 1. 虚拟现实(VR)中的头部姿态跟踪 2. 驾驶员注意力监测(如检测头部偏转角度) 3. 机器人的物体抓取姿态估计 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烧技湾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值