问题描述
任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用递归实现会比较简单,可以一边递归一边输出
提示
用递归实现会比较简单,可以一边递归一边输出
首先,需要说明的是,在我看来,这个题的提示有点坑,因为在用递归的时候细节处理比较麻烦,仔细观察就会发现,这个题的数据最大也不会超过20000,也就是说最大也不会超过2的15次方,于是,问题就就简单很多了,先将2的0次方到2的15次方的形式都写出来,再把数据写成二进制的形式,找到1的位置,即2的n次方的位置,然后把预先输入的形式添加上就行了,别忘了前面加上2和“+”,详情见代码,不过,我还是很希望大神能写出一个递归的形式,小弟递归掌握的着实一般
#include<iostream>
#include<string>
using namespace std;
int bin[16];
string index[16]={
"(0)",//2(0)
"",//2(1)
"(2)",//2(2)
"(2+2(0))",//2(3)
"(2(2))",//2(4)
"(2(2)+2(0))",//2(5)
"(2(2)+2)",//2(6)
"(2(2)+2+2(0))",//2(7)
"(2(2+2(0)))",//2(8)
"(2(2+2(0))+2(0))",//2(9)
"(2(2+2(0))+2)",//2(10)
"(2(2+2(0))+2+2(0))",//2(11)
"(2(2+2(0))+2(2))",//2(12)
"(2(2+2(0))+2(2)+2(0))",//2(13)
"(2(2+2(0))+2(2)+2)",//2(14)
"(2(2+2(0))+2(2)+2+2(0))",//2(15)
};
int sep(int n)
{
int i,j,temp;
for(i=0,j=0;n!=0;i++)
{
temp=n%2;
n=n/2;
if(temp==1)
{
bin[j]=i;
j++;
}
}
return j-1;
}
int main()
{
int n,i;
cin>>n;
i=sep(n);
for(;i>=0;i--)
{
cout<<"2";
cout<<index[bin[i]];
if(i!=0)
cout<<"+";
}
return 0;
}