SumTime Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u
Description
Sample Input
2
Sample Output
2
Hint
1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases.
核心就是求一个组合的问题,对于一个固定的k,意思是有k个大于1的数字之和为N,那么我们可以将N表示为N个1,然后我们在这些1之间插入隔板,插入m个隔板,我们将得到m+1个组,因此如我我们要得到k组,我们只需要插入k-1个隔板,一共有N-1个空,因此共有C(n-1,k-1)种组合,于是,题目实际上要求C(n-1,0)+C(n-1,1)+...+C(n-1,n-1)=2^(n-1)。
于是,问题就被转化为求一个指数幂取余,我们很明显知道要用快速幂,但是数据范围太大,仔细观察,可以发现MOD=10^9+7是一个与2互质的数,这样的话就可以利用欧拉定理,
但是欧拉定理的指数是欧拉函数,不过我们又知道,质数的欧拉函数是其值减一,而
a^n==a^(k*oula(p)+r)==a^(k*oula(p))*a^r (mod m),其中a^(k*oula(p))部分为1,这个可以由欧拉定理得到,于是问题进一步简化为求a^r,其中r=n%(oula(p)),这时候,oula(p)=p-1,其范围仍然较大,因此可以使用大数取余法,然后再使用快速幂。
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
typedef long long ll;
const ll MOD=1000000007;
ll PowerMod(ll a, ll b, ll c)
{
ll ans = 1;
a = a % c;
while(b>0)
{
if(b % 2 == 1)
ans = (ans * a) % c;
b = b/2;
a = (a * a) % c;
}
return (ans+c)%c;
}
ll Mod(char a[],int len,ll b)
{
ll ans=0;
for(int i=0;i<len;i++)
{
ans=(ans*10%b+(a[i]-'0'))%b;
}
return ans;
}
int main()
{
char N[100010];
ll ans,p,len,mod;
//N[0]=N[1]=1;
//cout<<Mod(N,2,3);
mod=MOD-1;
while(~scanf("%s",N))
{
len=strlen(N);
p=Mod(N,len,mod);
p=(p-1+mod)%mod;
ans=PowerMod(2,p,MOD);
printf("%lld\n",ans);
//printf("%I64d\n",ans);
}
return 0;
}