SUM 大数取余 欧拉定理 二项展开 数论

SumTime Limit:1000MS    Memory Limit:131072KB    64bit IO Format:%I64d & %I64u

Description

 

Sample Input

    
    
2
 

Sample Output

    
    
2

Hint

 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases. 

    核心就是求一个组合的问题,对于一个固定的k,意思是有k个大于1的数字之和为N,那么我们可以将N表示为N个1,然后我们在这些1之间插入隔板,插入m个隔板,我们将得到m+1个组,因此如我我们要得到k组,我们只需要插入k-1个隔板,一共有N-1个空,因此共有C(n-1,k-1)种组合,于是,题目实际上要求C(n-1,0)+C(n-1,1)+...+C(n-1,n-1)=2^(n-1)。

    于是,问题就被转化为求一个指数幂取余,我们很明显知道要用快速幂,但是数据范围太大,仔细观察,可以发现MOD=10^9+7是一个与2互质的数,这样的话就可以利用欧拉定理

但是欧拉定理的指数是欧拉函数,不过我们又知道,质数的欧拉函数是其值减一,而

a^n==a^(k*oula(p)+r)==a^(k*oula(p))*a^r (mod m),其中a^(k*oula(p))部分为1,这个可以由欧拉定理得到,于是问题进一步简化为求a^r,其中r=n%(oula(p)),这时候,oula(p)=p-1,其范围仍然较大,因此可以使用大数取余法,然后再使用快速幂。

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
typedef long long ll;
const ll MOD=1000000007;

ll PowerMod(ll a, ll b, ll c)
{
    ll ans = 1;
    a = a % c;
    while(b>0)
    {
        if(b % 2 == 1)
            ans = (ans * a) % c;
        b = b/2;
        a = (a * a) % c;
    }
    return (ans+c)%c;
}


ll Mod(char a[],int len,ll b)
{
    ll ans=0;
    for(int i=0;i<len;i++)
    {
        ans=(ans*10%b+(a[i]-'0'))%b;
    }
    return ans;
}

int main()
{
    char N[100010];
    ll ans,p,len,mod;
    //N[0]=N[1]=1;
    //cout<<Mod(N,2,3);
    mod=MOD-1;
    while(~scanf("%s",N))
    {
        len=strlen(N);
        p=Mod(N,len,mod);
        p=(p-1+mod)%mod;
        ans=PowerMod(2,p,MOD);
        printf("%lld\n",ans);
        //printf("%I64d\n",ans);
    }

    return 0;
}



  




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值