好久没有总结题目了,大概有好长时间了,怎么颓废了呢,一定是看片看多了,以后还是要洁身自好一点。
。。。。。(无耻的笑)
最小生成树!!!
求1我i起点的最小生成树
3 3
1 2 1
2 3 2
1 3 4
结果:
3
由于这半年来我开了数据结构这门课程,虽然老师有点坑,但是我还是真正的学习了,(不学能行么!!!)
这是图的问题,在老严的那本书上有讲解,有两种算法可以解决这样的题目,我在这里就讲解一种
叫做 prim 算法,(其实另一种我还没有敲过,不会啦,哎,只能说自己实在是太弱了),
经过我的不懈努力,我终于懂得了这个算法的意思了,虽然只是皮毛,但是我还是想总结一下,方便以后回顾嘛!!
我的理解是,prim 算法就是开始从一个点开始,这个点是图上的点,从这个点出发,之后找到距离他最近的点,也就是权了,但是只能是一条线段的权,不能是多条线段的权,最后记录下来,在之后通过这个权最小的点,在找到距离他最小点,这样找到n-1个线段,链接起来就是一个最小生成树了。
其实意思就算给我,有时间我也编写不出来,我记得原来是没有思想,但是能编写出来,但是现在是有了思想,但是代码写不出来了,哎,悲哀啊!!!!
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<math.h>
using namespace std;
int arr[1000][1000];
int prime(int n){
int temp[1000];
int vis[1000];
int sum = 0;
memset(vis,0,sizeof(vis));
for(int i = 1;i <= n;i++){
temp[i] = arr[1][i];
}
for(int i = 1;i < n;i++){
int Min = (1<<30);
int dis = 0;
for(int j = 2;j <= n;j++){
if(Min > temp[j] && !vis[j]){
Min = temp[j];
dis = j;
}
}
sum += Min;
vis[dis] = 1;
for(int k = 2;k <= n;k++){
temp[k] = min(temp[k],arr[dis][k]);
}
}
return sum;
}
int main( void ){
int n,m;
int a,b,c;
while(scanf("%d %d",&n,&m) != EOF){
memset(arr,0X3f,sizeof(arr));
for(int i = 0;i < m;i++){
scanf("%d %d %d",&a,&b,&c);
arr[a][b] = c;
arr[b][a] = c;
}
int sum = prime(n);
printf("%d\n",sum);
}
return 0;
}