图片尺寸的计算,nn.conv2d to nn.linear

官方文档:
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5*5 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square, you can specify with a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()
print(net)

在这里插入图片描述

因:self.conv1 = nn.Conv2d(1, 6, 5),又因输入的图片尺寸为32*32

根据公式:https://cs231n.github.io/convolutional-networks/
在这里插入图片描述

故:(32-5+20)/1+1 = 28
subsampling:28/2 = 14
因:self.conv2 = nn.Conv2d(6, 16, 5)
故:(14-5+2
0)/1+1=10
subsampling:10/2 = 5
全连接层:
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
似乎可以随意设置,常规来说深度是偶数,层数不限,最后一层的10与数据的的类别相同

参考:
https://towardsdatascience.com/pytorch-layer-dimensions-what-sizes-should-they-be-and-why-4265a41e01fd
https://github.com/xingruiyu/coteaching_plus/blob/master/model.py
https://majianglin2003.medium.com/create-neural-network-with-pytorch-1f91054fe229

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值