官方文档:
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square, you can specify with a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
因:self.conv1 = nn.Conv2d(1, 6, 5),又因输入的图片尺寸为32*32
根据公式:https://cs231n.github.io/convolutional-networks/
故:(32-5+20)/1+1 = 28
subsampling:28/2 = 14
因:self.conv2 = nn.Conv2d(6, 16, 5)
故:(14-5+20)/1+1=10
subsampling:10/2 = 5
全连接层:
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
似乎可以随意设置,常规来说深度是偶数,层数不限,最后一层的10与数据的的类别相同
参考:
https://towardsdatascience.com/pytorch-layer-dimensions-what-sizes-should-they-be-and-why-4265a41e01fd
https://github.com/xingruiyu/coteaching_plus/blob/master/model.py
https://majianglin2003.medium.com/create-neural-network-with-pytorch-1f91054fe229