题目描述
平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。
若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短路径。
输入
输入共n+m+3行,其中:
第一行为整数n。
第2行到第n+1行(共n行) ,每行两个整数x和y,描述了一个点的坐标。
第n+2行为一个整数m,表示图中连线的个数。
此后的m 行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。
输出
输出仅一行,一个实数(保留两位小数),表示从s到t的最短路径长度。
样例输入 复制
5 0 0 2 0 2 2 0 2 3 1 5 1 2 1 3 1 4 2 5 3 5 1 5
样例输出 复制
3.41
Floyd算法:
#include <bits/stdc++.h>
using namespace std;
int x[101],y[101];
double xy[101][101];
int main()
{
int n,m;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
xy[i][j]=0x7fffffff/3;
}
}
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x[i],&y[i]);
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int t,v;
scanf("%d%d",&t,&v);
xy[t][v]=sqrt(abs(x[t]-x[v])*abs(x[t]-x[v])+abs(y[t]-y[v])*abs(y[t]-y[v]));
xy[v][t]=xy[t][v];
}
int b,c;
cin>>b>>c;
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(xy[i][k]+xy[k][j]<xy[i][j])
{
xy[i][j]=xy[i][k]+xy[k][j];
xy[j][i]=xy[i][k]+xy[k][j];
}
}
}
}
printf("%.2lf",xy[b][c]);
return 0;
}