充分必要条件解释!
如:设“下雨”为p,“骑车上班”为q,,
1.“只要(sufficient condition)不下雨,我骑自行车上班”。~p 是q的充分条件,
因而,可得命题公式: ~p → q
2.“只有(necessary condition)不下雨,我才骑自行车上班”。~p 是q的必要条件,
因而,可得命题公式:q → ~p
命题逻辑基础
定义:
若A无成假赋值,则称A为重言式或永真式;
若A无成真赋值,则称A为矛盾式或永假式;
若A至少有一个成真赋值,则称A为可满足的;
析取范式:仅由有限个简单合取式组成的析取式。
合取范式:仅由有限个简单析取式组成的合取式。
摩根率: ~ (p∨q) <=> ~ p Λ~ q ;
基本等值式(1)
~ (
p Λ
q) <=> ~
p ∨~
q
吸收率:
p∨(
pΛ
q ) <=>
p ;
p Λ(
p∨
q ) <=>
p
同一律:
p∨0 <=>
p ;
pΛ1 <=>
p
蕴含等值式:
p →
q <=> ~
p∨
q
假言易位式:
p →
q <=> ~
q → ~
p
谓词归结原理基础
量词否定等值式:
n~(" x ) M(x) <=> ( $ y ) ~ M(y)
n~($ x ) M(x) <=> ( " y ) ~ M(y)
量词分配等值式:
n(" x )( P(x) ΛQ(x)) <=> (" x ) P(x) Λ (" x ) Q(x)
n($ x )( P(x) ∨ Q(x)) <=> ($ x ) P(x) ∨ ($ x ) Q(x)
消去量词等值式:设个体域为有穷集合(a1, a2, …an)
n(" x ) P(x) <=> P( a1 ) Λ P( a2 ) Λ …Λ P( an )
n($ x )P(x) <=> P( a1 ) ∨ P( a2 ) ∨ … ∨ P( an )