充分必要条件解释!

充分必要条件解释!
如:设“下雨”为p,“骑车上班”为q,,
1.“只要(sufficient condition)不下雨,我骑自行车上班”。~pq的充分条件,
因而,可得命题公式: ~pq
2.“只有(necessary condition)不下雨,我才骑自行车上班”。~pq的必要条件,
因而,可得命题公式:q → ~p

命题逻辑基础
 定义:
 若A无成假赋值,则称A为重言式或永真式;
 若A无成真赋值,则称A为矛盾式或永假式;
 若A至少有一个成真赋值,则称A为可满足的;
 析取范式:仅由有限个简单合取式组成的析取式。
 合取范式:仅由有限个简单析取式组成的合取式。

 
摩根率: ~ (pq) <=> ~ p Λ~ q
 基本等值式(1)
 ~ ( p Λ q) <=> ~ p ∨~ q
 吸收率: p∨( pΛ q ) <=> p
              p Λ( pq ) <=> p
 同一律: p∨0 <=> p
              pΛ1 <=> p
 蕴含等值式: p q <=> ~ pq
 假言易位式: p q <=> ~ q → ~ p


谓词归结原理基础

量词否定等值式:
n~(" x ) M(x) <=> ( $ y ) ~ M(y)
n~($ x ) M(x) <=> ( " y ) ~ M(y)
量词分配等值式:
n(" x )( P(x) ΛQ(x)) <=> (" x ) P(x) Λ (" x ) Q(x)
n($ x )( P(x) ∨ Q(x)) <=> ($ x ) P(x) ∨ ($ x ) Q(x)
消去量词等值式:设个体域为有穷集合(a1, a2, …an)
n(" x ) P(x) <=> P( a1 ) Λ P( a2 ) Λ …Λ P( an )
n($ x )P(x) <=> P( a1 ) ∨ P( a2 ) ∨ … ∨ P( an )



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值