文章目录
如果你的项目中有目标检测相关的内容,那么本篇内容就一定要好好看看。不会的看到了理解下,会的看看是不是和自己理解的一样。
一、YOLO 如何通过 k-means 得到 anchor boxes的?
YOLOv2 和 YOLOv3是目标检测领域中非常流行的算法,它们都使用了anchor boxes来提高检测的准确率。这些anchor boxes是通过在训练数据集上应用k-means聚类算法来确定的,目的是找到最能代表训练数据集中所有对象的宽高比例的anchor boxes。
以下是使用k-means算法确定YOLOv2和YOLOv3中anchor boxes尺寸的过程详解:
- 收集训练数据集中所有对象的宽度和高度
首先,需要遍历训练数据集中的所有图像,并记录下图中每个对象的宽度和高度。这些宽度和高度需要根据输入图像的尺寸进行归一化,确保其值处于0到1之间,这是因为在实际应用中,输入图像的尺寸可能会有所不同。
- 应用
k-means聚类算法
使用收集到的所有对象的宽度和高度作为聚类算法的输入,应用k-means
本文详细介绍了YOLO如何使用k-means算法确定anchor boxes,包括为何不使用欧式距离,步骤,收敛条件,以及可能出现的不收敛情况。此外,还对比了Yolo、SSD和faster rcnn的正负样本定义,讨论了Yolov5在单类别目标检测中损失函数的设计,并与多类别目标检测的情况进行了比较。
订阅专栏 解锁全文
836

被折叠的 条评论
为什么被折叠?



