回溯法

下面链接介绍了回溯法,但是例子代码不太容易理解。只参考了前面的文字介绍。不过这个可以对回溯法做一个简单全面的了解。而且有子集树和排列树的框架

http://www.cnblogs.com/chinazhangjie/archive/2010/10/22/1858410.html

一.采用子集树(当所给问题是从n个元素的集合S中找出满足某种性质的子集时,解空间为子集树例如:0-1背包问题 

void backtrack(int  t)

{
     if(t>n)   
        output(x);
     else
        for(int i=0; i<=1; i++)
      {  
             x[t] =i; 
             if(constraint(t)&& bound(t))     
                 backtrack(t+1);
       }  
}

其中的装载例子(特殊的0-1背包问题),可以见下面的代码,比较清晰:

http://blog.csdn.net/yuanyu5237/article/details/6594921

其中42行的if(cw+w[i] <= c)是约束条件,其中49行的if(cw+r > bestw)是限界函数,因为如果当前已装载的重量+剩下的集装箱重量(不包含当前集装箱重量)还小于当前最优的已装载量,那么再继续遍历后面子节点,就算全部都装上,最终也小于当前最优的已装载量,也就是说最后得出的最优装载量还是当前已装载的最优装载量,所以不必多此一举。

   其中的背包问题还不错,有限界条件,如果不考虑限界条件,更一般的回溯解法如下:

http://blog.csdn.net/liangneo/article/details/4456317

这个文章里面对采用子集树的回溯法做了比较详细的说明,推荐参考

二.采用排列树当所给问题是从n个元素的集合S中找出满足某种性质的排列时,解空间为排列树例如:旅行售货员问题

void backtrack(int  t)

   {
       if(t>n)  

          output(x);
       else      

          for(inti=t; i<=n; i++)
          {
            swap(x[t],x[i]);
           if(constraint(t) && bound(t))     backtrack(t+1);
            swap(x[t],x[i]);       

        }     

  }

      旅行售货员问题可以参考下面的文章,一般般喽:

http://blog.csdn.net/liufeng_king/article/details/8890603


另外,自己写个测试程序

#include<iostream>
#include<vector>
using namespace std;

//子集树求 数组的所有子集
void solve1(vector<int> &a,int t,vector<vector<int> > &res,vector<int> &tem_res){
    if(t>=a.size()){
        res.push_back(tem_res);
        return;
    }else{
        for(int i=0;i<=1;++i){
            if(i==1) tem_res.push_back(a[t]);
            solve1(a,t+1,res,tem_res);
        }
        tem_res.pop_back();
    }
}

//排列数求数组的全排列
void solve2(vector<int> &a,int t,vector<vector<int> > &res,vector<int> &tem_res){
    if(t>=a.size()){
        res.push_back(tem_res);
        return;
    }else{
        for(int i=t;i<a.size();++i){
            swap(a[t],a[i]);
            tem_res=a;
            solve2(a,t+1,res,tem_res);                                                                                                        
            swap(a[t],a[i]);
        }
    }

}

//测试程序
int main(){
    vector<int> a;
    a.push_back(1);
    a.push_back(2);
    a.push_back(3);
    vector<vector<int> > res;
    vector<int> tem_res;
    cout<<"zi ji shu:"<<endl;
    solve1(a,0,res,tem_res);                                                                                                                  
    for(int i=0;i<res.size();++i){
        vector<int> tem=res[i];
        for(int j=0;j<tem.size();++j){
            cout<<tem[j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;

    vector<int> b;
    b.push_back(1);
    b.push_back(2);
    b.push_back(3);
    vector<vector<int> > b_res;
    vector<int> b_tem_res;
    cout<<"pai lie shu:"<<endl;
    solve2(b,0,b_res,b_tem_res);
    for(int i=0;i<b_res.size();++i){
        vector<int> tem=b_res[i];
        for(int j=0;j<tem.size();++j){
            cout<<tem[j]<<" ";
        }
        cout<<endl;
    }
    return 0;
}


另外:下面的链接介绍了如何使用回溯法框架,但是目前还没怎么看:

http://www.cnblogs.com/wuyuegb2312/p/3273337.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值