下面链接介绍了回溯法,但是例子代码不太容易理解。只参考了前面的文字介绍。不过这个可以对回溯法做一个简单全面的了解。而且有子集树和排列树的框架。
http://www.cnblogs.com/chinazhangjie/archive/2010/10/22/1858410.html
一.采用子集树(当所给问题是从n个元素的集合S中找出满足某种性质的子集时,解空间为子集树。例如:0-1背包问题
void backtrack(int t)
{if(t>n)
output(x);
else
for(int i=0; i<=1; i++)
{
x[t] =i;
if(constraint(t)&& bound(t))
backtrack(t+1);
}
}
其中的装载例子(特殊的0-1背包问题),可以见下面的代码,比较清晰:
http://blog.csdn.net/yuanyu5237/article/details/6594921
其中42行的if(cw+w[i] <= c)是约束条件,其中49行的if(cw+r > bestw)是限界函数,因为如果当前已装载的重量+剩下的集装箱重量(不包含当前集装箱重量)还小于当前最优的已装载量,那么再继续遍历后面子节点,就算全部都装上,最终也小于当前最优的已装载量,也就是说最后得出的最优装载量还是当前已装载的最优装载量,所以不必多此一举。
其中的背包问题还不错,有限界条件,如果不考虑限界条件,更一般的回溯解法如下:
http://blog.csdn.net/liangneo/article/details/4456317
这个文章里面对采用子集树的回溯法做了比较详细的说明,推荐参考。
二.采用排列树(当所给问题是从n个元素的集合S中找出满足某种性质的排列时,解空间为排列树。例如:旅行售货员问题)
void backtrack(int t)
{
if(t>n)
output(x);
else
for(inti=t; i<=n; i++)
{
swap(x[t],x[i]);
if(constraint(t) && bound(t)) backtrack(t+1);
swap(x[t],x[i]);
}
}
旅行售货员问题可以参考下面的文章,一般般喽:http://blog.csdn.net/liufeng_king/article/details/8890603
另外,自己写个测试程序:
#include<iostream>
#include<vector>
using namespace std;
//子集树求 数组的所有子集
void solve1(vector<int> &a,int t,vector<vector<int> > &res,vector<int> &tem_res){
if(t>=a.size()){
res.push_back(tem_res);
return;
}else{
for(int i=0;i<=1;++i){
if(i==1) tem_res.push_back(a[t]);
solve1(a,t+1,res,tem_res);
}
tem_res.pop_back();
}
}
//排列数求数组的全排列
void solve2(vector<int> &a,int t,vector<vector<int> > &res,vector<int> &tem_res){
if(t>=a.size()){
res.push_back(tem_res);
return;
}else{
for(int i=t;i<a.size();++i){
swap(a[t],a[i]);
tem_res=a;
solve2(a,t+1,res,tem_res);
swap(a[t],a[i]);
}
}
}
//测试程序
int main(){
vector<int> a;
a.push_back(1);
a.push_back(2);
a.push_back(3);
vector<vector<int> > res;
vector<int> tem_res;
cout<<"zi ji shu:"<<endl;
solve1(a,0,res,tem_res);
for(int i=0;i<res.size();++i){
vector<int> tem=res[i];
for(int j=0;j<tem.size();++j){
cout<<tem[j]<<" ";
}
cout<<endl;
}
cout<<endl;
vector<int> b;
b.push_back(1);
b.push_back(2);
b.push_back(3);
vector<vector<int> > b_res;
vector<int> b_tem_res;
cout<<"pai lie shu:"<<endl;
solve2(b,0,b_res,b_tem_res);
for(int i=0;i<b_res.size();++i){
vector<int> tem=b_res[i];
for(int j=0;j<tem.size();++j){
cout<<tem[j]<<" ";
}
cout<<endl;
}
return 0;
}
另外:下面的链接介绍了如何使用回溯法框架,但是目前还没怎么看:
http://www.cnblogs.com/wuyuegb2312/p/3273337.html