下载数据
使用课程提供的数据下载地址:http://fenggao-image.stor.sinaapp.com/dogscats.zip
解压数据
数据预处理
打印预览数据
创建 VGG Model
使用预训练好的 VGG 模型。将最后一层进行改写nn.Linear(4096, 2)使得最后输出的结果只有两个,即分辨猫与狗。
训练并测试全连接层
使用Adam优化器对模型进行优化
'''
第一步:创建损失函数和优化器
损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签.
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络.
'''
criterion = nn.NLLLoss()
# 学习率
lr = 0.001
# 这里使用Adam优化器
optimizer_vgg = torch.optim.Adam(model_vgg_new.classifier[6].parameters(),lr = lr)
'''
第二步:训练模型并保存
model: 训练的模型
dataloader: 训练集
size: 训练集大小
epochs: 训练次数
optimizer: 优化器
'''
def train_model(model,dataloader,size,epochs=1,optimizer=None):
model.train() #用于模型训练
for epoch in range(epochs):
epoch_acc_max = 0
running_loss = 0.0
running_corrects = 0
count = 0
for inputs,classes in dataloader:
inputs = inputs.to(device)
classes = classes.to(device)
outputs = model(inputs) #参数前向传播
loss = criterion(outputs,classes)
optimizer = optimizer
optimizer.zero_grad() #优化器梯度初始化
loss.backward() #梯度反向传播
optimizer.step()
_,preds = torch.max(outputs.data,1) #得到预测结果
# statistics
running_loss += loss.data.item()
running_corrects += torch.sum(preds == classes.data)
count += len(inputs)
print('Training: No. ', count, ' process ... total: ', size)
epoch_loss = running_loss / size
epoch_acc = running_corrects.data.item() / size
if epoch_acc > epoch_acc_max:
epoch_acc_max = epoch_acc
torch.save(model, 'model_best.pth') #保存最好模型
print('Loss: {:.4f} Acc: {:.4f}'.format(
epoch_loss, epoch_acc))
# 模型训练
train_model(model_vgg_new, loader_train,size = dset_sizes['train'],
epochs = 5, optimizer=optimizer_vgg)
测试test