深度学习(VGG模型)

本文通过对比原始CNN模型与VGG模型,展示了VGG在深度学习中的优势。使用VGG-16进行海洋生物识别,经过数据增强,测试集准确率达到97.15%。VGG模型因其简洁的结构和强大的表达能力,尽管参数量大,但在迁移学习任务中表现出色。
摘要由CSDN通过智能技术生成

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本程序采用百度 paddlepaddle 深度学习框架,并在百度 AI Studio 平台上运行

目录

1 实验内容

2 原始模型 CNN

2.1 原始 CNN 网络结构

2.2 原始 CNN 的定义

2.3 原始 CNN 模型的测试结果

3 VGG 模型

3.1 VGG 的介绍

3.2 VGG 的网络结构

3.3 VGG-16 网络的定义

3.4 数据增强

3.5 训练曲线与测试结果

3.6模型评价

4 总结

5 完整源程序


1 实验内容

本次实验采用简单的 CNN 模型与 VGG 模型对海洋生物进行识别,下面是数据集的介绍

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无意2121

创作不易,多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值