通俗地说,CUDA是一种协助“CPU任务分发+GPU并行处理”的编程模型/平台,用于加速GPU和CPU之间的计算。
也就是说CUDA通过CPU任务分发和GPU并行处理的方式,把计算任务通过CPU分发给GPU进行并行计算加速。而GPU并行计算的能力需要CUDA借助其自带的编程接口和工具,比如C/C++语言来编写并行计算程序,并通过CUDA编译器将程序转化为可以在英NVIDIA GPU上执行的机器码快速运行。
所以,通过使用CUDA平台,开发者可以充分利用GPU的并行计算能力加速各种应用程序的运行速度,同时还能与CPU进行协同计算。而人工智能运算往往需要进行大规模亿级的计算,这也就是CUDA在人工智能领域大行其道的原因之一。
那么,在CUDA平台下,CPU和GPU是如何分工协作的?
CPU和GPU在计算中分工协作的一般方式是这样的:
1. CPU负责任务调度和管理:CPU充当主机处理器的角色,负责任务的分发、管理和控制。它接收应用程序的指令,将计算任务分配给GPU进行处理,同时负责控制GPU的操作流程。
2. GPU负责并行计算:GPU作为辅助处理器,专注于并行计算任务的处理。它接收CPU分发的计算任务,使用大量的小处理单元(CUDA核心)同时执行任务,以高效地完成大规模并行的浮点数或向量计算。
3. 数据交换:CPU和GPU之间需