AUC及TensorFlow AUC计算相关

本文介绍了AUC的概念,包括真正例率、假正例率以及ROC曲线,详细阐述了ROC曲线的形成过程。同时,针对深度学习模型,讲解了如何在TensorFlow中使用tf.metrics.auc计算AUC,特别提到了使用过程中可能遇到的问题及其解决方案。
摘要由CSDN通过智能技术生成

最近在打天池的比赛,里面需要用AUC来评测模型的性能,所以这里介绍一下AUC的相关概念,并介绍TensorFlow含有的函数来计算AUC。

先介绍一些前置的概念。在一个二分类问题中,如果本身是正例(positive),预测正确也预测成正例,则称为真正例(true positive),简称TP,而预测错误预测成了反例,则称为假反例(false negative),简称FN,如果本身是反例(negative),预测正确也预测成反例,则称为真反例(true negative),简称TN,而预测错误预测成了正例,则称为假正例(false positive),简称FP。查准率、查全率以及F1值都是根据上述四个值计算出来的,这里不做赘述。

真正例率(True Positive Rate,简称TPR),计算公式为TPR = TP / (TP + FN),和查全率的公式一致,表示预测为正例且本身是正例的样本数占所有本身是正例的样本数的比重。假正例率(False Positive Rate,简称FPR),计算公式为FPR = FP / (TN + FP),表示预测为正例且本身是反例的样本数占所有本身是反例的样本数的比重。

ROC全称是受访者工作特征(Receiver Operating Characteristic)曲线,用来研究一般情况下模型的泛化性能。先根据模型的预测结果将样本进行排序,将最可能是正例,也就是预测出是正例的概率最高的样本排在前面,然后概率依次降低,将最不可能是正例也就是预测时正例概率最低的样本排在最后。然后ROC曲线以真正例率作为纵轴,假正例率作为横轴,按顺序逐个把样本预测成正例,在每个样本预测后TPR、FPR的值都会改变,就在图像上增加一个新的点,直到所有点都预测为正例为止。可以考虑一种极端情况作为例子,如果模型非常完美,泛化性能很好,则在排序后前面的全是预测正例实际上也是正例,后面的全是反例,实际上也是反例。一开始将所有样本都预测为反例,此时TP和FP都是0,所以曲线从原点(0,0)开始,将第一个样本预测为正例,此时它本身是正例,预测也是正例,所以TP为1,TPR此时为1/正例样本数,而FP还是为0,所以曲线下一个点沿y轴向上。以此类推,一直预测到最后一个正例,此时

  • 7
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值