tensorflow 评估指标中F1,AUC的计算

本文介绍了在TensorFlow中如何计算评估指标F1分数和AUC(Area Under Curve)。重点讲解了AUC的计算函数,包括返回值、参数设置以及注意事项。特别强调了在计算AUC前必须初始化局部变量,以及需要先执行AUC的更新操作才能获取正确的AUC值。同时提供了一个手动计算AUC的辅助方法作为补充。
摘要由CSDN通过智能技术生成

AUC计算的函数:

tf.metrics.auc(
    labels,
    predictions,
    weights=None,
    num_thresholds=200,
    metrics_collections=None,
    updates_collections=None,
    curve='ROC',
    name=None,
    summation_method='trapezoidal'
)

函数返回值:

  1. auc: A scalar Tensor representing the current area-under-curve.

  2. update_op: An operation that increments the true_positives, true_negatives, false_positives and false_negatives variables appropriately and whose value matches auc.

最简单的使用方法是直接传两个参数labels和predictions,也就是样本的标签和预测的概率,会得到返回的auc的值,num_thresholds的值默认为200,而越大auc的值会越精确,一直到你的样本数量为止,之后再增大不会改变,所以样本数大于200需要对num_thresholds进行传参。

需要注意的事项是:

1、调用该函数之前必须进行局部参数初始化。

sess.run(tf.local_variables_initializer()) 或 sess.run(tf.initialize_local_variables())

这里只sess.run(tf.global_variables

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值