题目链接
- 题目大意:a个x和b个o,对于连续的len个x,结果加上len * len;对于连续的len个o,结果减去len * len
- 分析:
先写一下当时做题时候的想法。首先考虑给定一整块的‘x',然后一个一个的插入’o‘,依次考虑。现在想来,这不是基于最优性原理么,局部的最优才能获得结果的最优。这个问题看来是不满足这个原理的,所以之后的思维都是错误的。有时候不能急着往下想,先想想基本的原理是不是正确的
如果可以排除这一思路,那么就不能逐个加入来找结论了。 - 思路:
首先明白一个简单的道理,和的平方不小于平方的和,即(a + b) ^ 2 >= a ^ 2 + b ^ 2
也就是说,对于’x',尽可能少分开它,并且尽量集中在一起;对于‘o’,尽可能多的分开。这样分可以使得结果最优。
再注意一点,最后生成的序列边界一定是‘x'(如果x足够多的话)。可以简单证明之,假如两侧不是'x'且序列中间仍有,那么总可以把最靠近边上的’x'移到外边,和不会减少。
接下来有一个问题,就是对与x和o分组数量的冲突:x分多了那么o必须也分的多。到这里应该就可以想到,a的范围不是很大,所以直接枚举x和o的组数即可。
这里应该注意一下,有时候能枚举什么的就不要再去考虑复杂的情况,只要效率够,枚举是最好的方法。
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
#include <bitset>
#include <fstream>
#include <list>
using namespace std;
//LOOP
#define FF(i, a, b) for(int i = (a); i < (b); ++i)
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FED(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)
//OTHER
#define SZ(V) (int)V.size()
#define PB push_back
#define MP make_pair
#define all(x) (x).begin(),(x).end()
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p)
#define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q)
#define RS(s) scanf("%s", s)
//OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(n) printf("%s\n", n)
//debug
//#define online_judge
#ifndef online_judge
#define debugt(a) cout << (#a) << "=" << a << " ";
#define debugI(a) debugt(a) cout << endl
#define debugII(a, b) debugt(a) debugt(b) cout << endl
#define debugIII(a, b, c) debugt(a) debugt(b) debugt(c) cout << endl
#define debugIV(a, b, c, d) debugt(a) debugt(b) debugt(c) debugt(d) cout << endl
#else
#define debugt(a)
#define debugI(v)
#define debugII(a, b)
#define debugIII(a, b, c)
#define debugIV(a, b, c, d)
#endif
#define sqr(x) (x) * (x)
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> VI;
const int INF = 0x3f3f3f3f;
const double EPS = 1e-10;
const int MOD = 1000000007;
const int MAXN = 1100;
const double PI = acos(-1.0);
template <class T>
T abs(T x)
{
return x < 0 ? -x : x;
}
int main()
{
// freopen("in.txt", "r", stdin);
LL a, b;
while (cin >> a >> b)
{
if (a == 0)
{
cout << -b * b << endl;
REP(i, b)
putchar('x');
cout << endl;
}
else if (b <= 1)
{
cout << a * a - b << endl;
REP(i, a)
putchar('o');
REP(i, b)
putchar('x');
cout << endl;
}
else
{
LL Max = -(LL)INF * 10000, div = 1;
for (LL i = 2; i <= min(a + 1, b); i++)
{
LL ans = 0, minval = b / i, maxnum = b % i;
ans -= minval * minval * (i - maxnum);
ans -= (minval + 1) * (minval + 1) * maxnum;
ans += i - 2;
ans += (a - i + 2) * (a - i + 2);
if (Max < ans)
{
div = i;
Max = ans;
}
}
cout << Max << endl;
LL minval = b / div, maxnum = b % div;
LL one = div - 2, tt = a - one;
REP(i, maxnum)
{
REP(j, minval + 1)
putchar('x');
if (one-- > 0)
putchar('o');
else
while (tt-- > 0)
putchar('o');
}
REP(i, div - maxnum)
{
REP(j, minval)
putchar('x');
if (one-- > 0)
putchar('o');
else
while (tt-- > 0)
putchar('o');
}
cout << endl;
}
}
return 0;
}