【可定制、转换时间戳】解析nc文件,并保存为csv文件

写在最前面

愿称之为:支持私人订制、非常完美的版本
请添加图片描述
参考:
解析部分参考:
https://blog.csdn.net/qq_40105563/article/details/119871620
时间换算参考:
https://blog.csdn.net/weixin_51015047/article/details/122571396
{不规则时间}:
https://blog.csdn.net/weixin_43646592/article/details/113427937
写入csv文件参考:
https://blog.csdn.net/Cqh__/article/details/109750908

原文发布时间:2023-09-09 21:06:47
质量分过低,因此进行完善

解析nc文件(代码汇总放最后面)

方便后续代码调整

读取nc文件

不清楚原因,xarray库读取有问题,只能用netCDF4库
在这里插入图片描述

获取气象文件中所有变量

在这里插入图片描述

解析时间

在这里插入图片描述

生成的real_time是一个numpy数组,数组中嵌套的是datetime对象

在这里插入图片描述
从1800年开始的,网上部分代码是从1900年开始的

在这里插入图片描述
将数据转化为字符串形式
注意:由于这个数据都是每个月1日,所以只用保存年/月格式的数据即可
如果需要保存年/月/日格式的数据,代码可改成:

data0 = str(real_time[i].year)+"/"+str(real_time[i].month)+str(real_time[i].day)

年月日时分秒,以此类推

解析部分代码汇总

import netCDF4
from netCDF4 import Dataset
dir = r'sst.mnmean.nc' # 替换为自己的nc文件
nc = Dataset(dir)

# 获取气象文件中所有变量
vars=nc.variables.keys()

#取出各variable的数据看看,数据格式为numpy数组
for var in vars:
    #读取每个变量的值
    var_data=nc.variables[var][:].data
    print(var,var_data.shape)

time = nc.variables['time']  # 读取时间
real_time = netCDF4.num2date(time,time.units)
print(real_time)

#查看一下time的属性
nc.variables['time']

time = nc.variables['time']  # 读取时间
real_time = netCDF4.num2date(time,time.units)
print(real_time)

print(real_time[0].year,real_time[0].month)
print(str(real_time[0].year)+"/"+str(real_time[0].month))

data = []
for i in range(len(real_time)):
    data0 = str(real_time[i].year)+"/"+str(real_time[i].month)
    data.append(data0)

print(data)

写入csv文件

from netCDF4 import Dataset
import csv

nc = Dataset('sst.mnmean.nc')
print(nc.variables.keys())

lat = nc.variables['lat'][:]
lon = nc.variables['lon'][:]
sst = nc.variables['sst'][:]

time = nc.variables['time']  # 读取时间
# 将时间转化格式:cftime.DatetimeGregorian(1854, 1, 1, 0, 0, 0, 0, has_year_zero=False)
real_time = netCDF4.num2date(time,time.units)
print(real_time)
# 将时间转化格式:['1854/1', '1854/2', '1854/3', '1854/4', '1854/5', '1854/6', '1854/7']
data = []
for i in range(len(real_time)):
    data0 = str(real_time[i].year)+"/"+str(real_time[i].month)
    data.append(data0)
print(data)

# def getDate(num):
#     y = 1801 + num/12
#     m = 1 + num % 12
#     return "%(year)d-%(month)02d"%{'year':y,'month':m}

with open('New_nc v2.0版本.csv', 'a', newline='') as fp:
    writer = csv.writer(fp, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
    writer.writerow(['time', 'lat', 'lon', 'sst'])
    # 输入经纬度的维数
    for i in range(len(data)):
        for j in range(len(lat)):
            for k in range(len(lon)):
                if str(sst[i][j][k]) not in '--':
                    writer.writerow([data[i], lat[j], lon[k], sst[ i, j, k]])

完结✿✿ヽ(°▽°)ノ✿

完善

代码解读

解析部分的代码

这段代码用于解读和处理NetCDF格式的气象文件(.nc文件),并提取其中的时间戳信息。以下是代码的解读:

  1. 首先,导入了netCDF4库,并从中导入Dataset类,这是用于处理NetCDF文件的关键类。

  2. dir变量指定了NetCDF文件的路径,即要打开和解析的文件。请根据您的实际文件路径替换它。

  3. 使用Dataset(dir)语句打开了指定路径的NetCDF文件,创建了一个名为nc的Dataset对象,以便后续操作。

  4. 获取气象文件中的所有变量,这是通过vars=nc.variables.keys()语句实现的。这将返回一个包含所有变量名称的列表。

  5. 然后,通过for循环遍历每个变量,读取其值并打印出变量名称以及其数据的形状。这是通过以下代码实现的:

    for var in vars:
        var_data = nc.variables[var][:].data
        print(var, var_data.shape)
    
  6. 接下来,通过nc.variables['time']语句,获取了名为time的时间变量,该变量包含时间戳信息。

  7. 使用netCDF4.num2date()函数,将时间戳数据转换为真实日期和时间。这是通过以下代码实现的:

    time = nc.variables['time']
    real_time = netCDF4.num2date(time, time.units)
    
  8. 打印了第一个时间戳的年份和月份,以及将其格式化为字符串的结果。

  9. 创建了一个名为data的空列表,接着使用for循环遍历real_time中的每个日期,并将其格式化为字符串(年/月)后,添加到data列表中。

  10. 最后,打印了整个data列表,其中包含了所有日期信息,以年/月格式表示。

总之,这段代码用于从NetCDF气象文件中提取时间戳信息,并将时间戳转换为易于理解的日期格式。这对于处理和分析气象数据非常有用。请确保替换dir变量为您自己的NetCDF文件路径,以便在您的实际数据上运行代码。

写入csv文件的代码

这段代码用于将从NetCDF文件中提取的气象数据写入CSV文件,以下是代码的解读:

  1. 首先,导入了netCDF4库的Dataset模块以及csv库,这是用于处理NetCDF文件和CSV文件的关键模块。

  2. 使用Dataset模块打开了名为sst.mnmean.nc的NetCDF文件,创建了一个名为nc的Dataset对象,以便后续操作。

  3. 通过nc.variables.keys()语句,获取了NetCDF文件中的所有变量名称,并将其打印出来,这有助于了解文件的内容。

  4. 通过nc.variables['lat'][:]nc.variables['lon'][:]nc.variables['sst'][:],分别读取了名为latlonsst的变量,并将其数据存储在latlonsst变量中。

  5. 使用nc.variables['time']语句,获取了名为time的时间变量,该变量包含时间戳信息。

  6. 使用netCDF4.num2date()函数,将时间戳数据转换为真实日期和时间,并将结果存储在real_time变量中。这部分代码已经在前面的代码解读中详细解释过。

  7. 创建一个空列表data,接着使用for循环遍历real_time中的每个日期,并将其格式化为字符串(年/月)后,添加到data列表中。这部分代码也在前面的代码解读中解释过。

  8. 打开名为New_nc v2.0版本.csv的CSV文件,如果文件不存在则会创建一个新的,使用csv.writer()函数创建一个writer对象,该对象用于写入CSV文件。设置了适当的分隔符、引号字符和引用规则。

  9. 使用writer.writerow(['time', 'lat', 'lon', 'sst']),写入CSV文件的标题行,包括timelatlonsst等列名。

  10. 使用嵌套的for循环,遍历日期、纬度(lat)和经度(lon)的所有组合,将对应的时间、纬度、经度和海表温度(sst)写入CSV文件,前提是sst[i][j][k]不等于’–'。这将产生一个CSV文件,包含了每个时间点、纬度和经度的海表温度数据。

总之,这段代码用于从NetCDF气象文件中提取时间戳和气象数据,然后将数据写入CSV文件,以便进行后续分析和处理。请确保替换文件路径和输出文件名以适应您的实际情况。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是Yu欸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值