This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input
1 5 1 4 2 5 -12 4 -12 1 2 4
Sample Output
2
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[550],a[550],b[550];
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m;
memset(dp,0,sizeof(dp));
cin>>n;
for(int i=1; i<=n; i++)
cin>>a[i];
cin>>m;
for(int i=1; i<=m; i++)
cin>>b[i];
for(int i=1; i<=n; i++)
{
int maxx=0;
for(int j=1; j<=m; j++)
{
if(a[i]>b[j])
maxx=max(maxx,dp[j]);
if(a[i]==b[j])
dp[j]=maxx+1;
}
}
sort(dp+1,dp+m+1);
cout<<dp[m]<<endl;
if(t)
cout<<endl;
}
return 0;
}
本文介绍了一个经典的计算机科学问题——寻找两个整数序列之间的最长公共递增子序列,并提供了一段C++代码实现。该算法通过动态规划求解,输入为两个整数序列,输出为最长公共递增子序列的长度。
2056

被折叠的 条评论
为什么被折叠?



