Greatest Common Increasing Subsequence

本文介绍了一个经典的计算机科学问题——寻找两个整数序列之间的最长公共递增子序列,并提供了一段C++代码实现。该算法通过动态规划求解,输入为两个整数序列,输出为最长公共递增子序列的长度。

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

int dp[550],a[550],b[550];

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n,m;
        memset(dp,0,sizeof(dp));
        cin>>n;
        for(int i=1; i<=n; i++)
            cin>>a[i];
        cin>>m;
        for(int i=1; i<=m; i++)
            cin>>b[i];
        for(int i=1; i<=n; i++)
        {
            int maxx=0;
            for(int j=1; j<=m; j++)
            {
                if(a[i]>b[j])
                    maxx=max(maxx,dp[j]);
                if(a[i]==b[j])
                    dp[j]=maxx+1;
            }
        }
        sort(dp+1,dp+m+1);
        cout<<dp[m]<<endl;
        if(t)
            cout<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值