更多资料获取
📚 个人网站:ipengtao.com
文本数据分析在当今信息时代具有重要地位,而Python作为一门强大的编程语言,提供了丰富的工具和库来处理和分析文本数据。本文将深入研究如何使用Python进行文本数据分析,提供详细全面的内容和丰富的示例代码。
读取文本数据
使用Python内置的open()
函数或第三方库如pandas
读取文本文件:
# 使用open()函数读取文本文件
with open('text_data.txt', 'r') as file:
text_content = file.read()
# 使用pandas读取文本文件
import pandas as pd
df = pd.read_csv('text_data.csv', delimiter='\t')
文本预处理
清理文本数据是文本分析的第一步,包括去除停用词、标点符号,转换为小写等:
import re
from nltk.corpus import stopwords
def preprocess_text(text):
text = text.lower()
text = re.sub(r'\W', ' ', text)
text = re.sub(r'\s+', ' ', text)
stop_words = set(stopwords.words('english'))
tokens = [word for word in text.split() if word not in stop_words]
return ' '.join(tokens)
preprocessed_text = preprocess_text(text_content)
词频统计
使用nltk
或Counter
库进行词频统计:
from nltk import FreqDist
from collections import Counter
# 使用nltk进行词频统计
freq_dist = FreqDist(preprocessed_text.split())
print(freq_dist.most_common(10))
# 使用Counter进行词频统计
word_count = Counter(preprocessed_text.split())
print(word_count.most_common(10))
文本情感分析
使用nltk
或TextBlob
库进行情感分析:
from nltk.sentiment import SentimentIntensityAnalyzer