《有限元分析及应用》第5章:变形体力学方程求解的试函数方法的原理

《有限元分析及应用》第5章:变形体力学方程求解的试函数方法的原理

5.1 变形体(弹性)力学方程求解方法分类及试函数方法

5.1.1 变形体(弹性)力学方程求解方法

变形体(弹性)力学方程求解方法主要有两类:

  1. 直接法:

    • 解析法(analytical method)
    • 半解析法(semi_inverse method)
    • 差分法(finite difference method)
  2. 间接法:试函数法(误差处理)

    • 加权残值法(weighted residual method)
    • 虚功原理(principle of virtual work)
    • 最小势能原理(principle of minimum potential energy)
    • 变分方法(variational method)

这些方法有两个要点:

  • 要点一:设置满足边界条件的解:试函数(含有待定系数)
  • 要点二:代入原控制方程后,处理误差,求出待定系数

5.1.2 加权残值法

试函数的取法:设有一组满足所有边界条件的试函数,也称为基地函数ϕi(x),将其线性组合为新的试函数:

v^(x)=c1ϕ1(x)+c2ϕ2(x)++cnϕn(x)

1. Galerkin 加权残值法
2. 残值最小二乘法

阅读更多

没有更多推荐了,返回首页