bzoj2286 [Sdoi2011]消耗战(树形dp+虚树)

32 篇文章 0 订阅
3 篇文章 0 订阅

题目链接

分析:
显然是一道dp,那我们就想方程吧
一开始dp的方程不是很成熟:
设计了一个状态 f[i][0/1] f [ i ] [ 0 / 1 ] ,表示是否选择 i i 个结点和根结点的路径
如果选择了i结点和根结点的路径,那么就没有必要选子树中的路径了
如果没选择,就需要选子树中的路径,但是这个转移方程不是很明确

实际上我们直接用最简单的dp就可以了:
f[i] f [ i ] 表示到 i i 结点的最小花费
那么每个结点有两种可能:选还是不选
选的花费就是w(fai,i),不选的话就统计一下子结点的 f f 值(递归下去)

f[i]=min(w(fai,i),(soni))

朴素的dp每次询问都是 O(n) O ( n ) 的复杂度,显然会T啊
注意题目中有限制 Σk<=500000 Σ k <= 500000 ,因此如果能将一次的时间复杂度减小到 O(k) O ( k ) 或者 O(klogk) O ( k l o g k ) ,就能通过了
因此,我们的关键是能构造出一棵结点 <=O(k) <= O ( k ) <script type="math/tex" id="MathJax-Element-13"><=O(k)</script>级别的虚树,并能在 O(k) O ( k ) 或者 O(klogk) O ( k l o g k ) 的时间构造完成

简单说一下吧:

定义某一次询问给出的岛屿为关键点
注意到对于某对关键点 (x,y) ( x , y )
假设 x>lca(x,y) x − > l c a ( x , y ) 的路径中,没有点是某一对关键点的 lca l c a ,也没有其他关键点,我们只用考虑这两个结点
我们要在这条路径上选一条边并删除,显然我们会贪心的选择最小的边
这样我们只要得到 x>lca(x,y) x − > l c a ( x , y ) 中的最小第一条边即可,其他路径上的点对答案不会产生任何影响
换句话说将 lca(x,y)>...>x l c a ( x , y ) − > . . . − > x 的路径直接压缩成 lca(x,y)>x l c a ( x , y ) − > x ,对答案不会产生影响
因此我们只需要保留所有关键点,以及它们两两之间的 lca l c a
按照原树的祖先关系连边,在构造得到的虚树上面跑dp即可
因为 k k 个点两两之间不同的 lca只有 k1 k − 1 个,因此产生的虚树是 O(k) O ( k )

tip

build虚树的时候单向连边即可
dp的时候处理完一个结点,清空st:st[now]=0;

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define ll long long

using namespace std;

const ll INF=1e18;
const int N=500010;
struct node{
    int y,nxt;
    ll v;
};
node way[N<<1];
int lg,deep[N],pre[N][20],in[N],clo,a[N],n,m,S[N],top,st[N],tot=0;
ll len[N][20],f[N];

void add(int u,int w,ll z)
{
    tot++;
    way[tot].y=w;way[tot].nxt=st[u];st[u]=tot;way[tot].v=z;
    tot++;
    way[tot].y=u;way[tot].nxt=st[w];st[w]=tot;way[tot].v=z;
}

void dfs(int now,int fa,int dep)
{
    deep[now]=dep;
    pre[now][0]=fa; in[now]=++clo;
    for (int i=st[now];i;i=way[i].nxt)
        if (way[i].y!=fa)
        {
            len[way[i].y][0]=way[i].v;
            dfs(way[i].y,now,dep+1);
        }
}

int lca(int x,int y)
{
    if (deep[x]<deep[y]) swap(x,y);
    int d=deep[x]-deep[y];
    if (d)
        for (int i=0;i<=lg&&d;i++,d>>=1)
            if (d&1)
                x=pre[x][i];
    if (x==y) return x;
    for (int i=lg;i>=0;i--)
        if (pre[x][i]!=pre[y][i])
        {
            x=pre[x][i];
            y=pre[y][i];
        }
    return pre[x][0];
}

void prepare()
{
    clo=0;
    memset(len,127,sizeof(len));
    dfs(1,0,1);

    for (int i=1;i<=lg;i++)
        for (int j=1;j<=n;j++)
            pre[j][i]=pre[pre[j][i-1]][i-1],
            len[j][i]=min(len[j][i-1],len[pre[j][i-1]][i-1]);
}

ll getlen(int x,int y)
{
    ll sum=INF;
    if (deep[x]<deep[y]) swap(x,y);
    int d=deep[x]-deep[y];
    if (d)
        for (int i=0;i<=lg&&d;i++,d>>=1)
            if (d&1)
                sum=min(sum,len[x][i]),x=pre[x][i];
    if (x==y) return sum;
    for (int i=lg;i>=0;i--)
        if (pre[x][i]!=pre[y][i])
        {
            sum=min(sum,len[x][i]);
            sum=min(sum,len[y][i]);
            x=pre[x][i];
            y=pre[y][i];
        }
    sum=min(sum,len[x][0]); sum=min(sum,len[y][0]);
    return sum;
}

int cmp(int a,int b)
{
    return in[a]<in[b];
}

void build(int x,int y)
{
    if (x==y) return;
    tot++;
    ll t=getlen(x,y);
    way[tot].y=y;way[tot].nxt=st[x];st[x]=tot;way[tot].v=t; 
}

void dp(int now,ll mn)
{
    f[now]=mn;
    ll sum=0;
    for (int i=st[now];i;i=way[i].nxt)
    {
        dp(way[i].y,way[i].v);
        sum+=f[way[i].y];
    }
    st[now]=0;   //清空st
    if (sum) f[now]=min(f[now],sum);   //if (sum)
}

void solve()
{
    int k;
    scanf("%d",&k);
    for (int i=1;i<=k;i++) scanf("%d",&a[i]);
    sort(a+1,a+1+k,cmp);
    int cnt=0;
    a[++cnt]=a[1];
    for (int i=2;i<=k;i++)
        if (lca(a[cnt],a[i])!=a[cnt]) a[++cnt]=a[i];
    k=cnt;
    tot=0; top=0; S[++top]=1;
    for (int i=1;i<=k;i++)
    {
        int now=a[i];
        int p=lca(now,S[top]);
        while (1)
        {
            if (deep[p]>=deep[S[top-1]])
            {
                build(p,S[top--]);
                if (S[top]!=p) S[++top]=p;
                break;
            }
            build(S[top-1],S[top]); 
            top--;  
        }
        if (now!=S[top]) S[++top]=now;
    }
    while (top-1) build(S[top-1],S[top]),top--;

    dp(1,INF);
    printf("%lld\n",f[1]);
}

int main()
{
    scanf("%d",&n); lg=log(n)/log(2);
    for (int i=1;i<n;i++) 
    {
        int u,w,z;
        scanf("%d%d%d",&u,&w,&z);
        add(u,w,z);
    }
    prepare();
    scanf("%d",&m);
    memset(st,0,sizeof(st));
    for (int i=1;i<=m;i++)
        solve();
    return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值