前置芝士
引入
在普通的线段树中,我们一般要开 4 N 4N 4N 的数组以避免越界。然而,在一些题目中,空间限制并不允许我们这样做。这个时候,就需要使用动态开点线段树。
动态开点线段树
我们来观察一下普通线段树的左儿子和右儿子的表示方法:
左儿子:p<<1
右儿子:p<<1|1
这样,虽然我们可以直接算出左右儿子,比较方便,但是,这样也浪费了大量的空间。
在学习二叉树的时候,二叉树还有哪种存储方法呢?
链式储存法,即对一个节点建立左右儿子指针,指向它的左右儿子。这样,建立新节点时,就不会浪费多余的空间。
这样一来,没有了空间的浪费,我们所需要的空间就大大减少了。对于动态开点二叉树,我们只需要开 2 N 2N 2N 的数组就可以了。
实现
动态开点线段树的实现和普通线段树差别不大,只是需要在使用节点时判断当前节点是否存在,如果不存在要建立新节点。
下面列出了与普通线段树有所不同的部分(洛谷 P3372 【模板】线段树 1)
b
u
i
l
d
:
build:
build:
void build(int &p,int l,int r)//注意p需要引用传递,因为你可能需要加入新节点
{
if(!p)
p=++tot;
if(l==r)
{
t[p].vis=a[l];
return;
}
int mid=(l+r)>>1;
build(t[p].lson,l,mid);
build(t[p].rson,mid+1,r);
push_up(p);
}
p u s h _ t a g : push\_tag: push_tag:
void push_tag(int &p,int l,int r,int k)
{
if(!p)
p=++tot;
t[p].vis+=(r-l+1)*k;
t[p].tag+=k;
}
u p d a t e : update: update:
void update(int &p,int l,int r,int L,int R,int k)
{
if(!p)
p=++tot;
if(L<=l&&R>=r)
{
push_tag(p,l,r,k);
return;
}
push_down(p,l,r);
int mid=(l+r)>>1;
if(L<=mid)
update(t[p].lson,l,mid,L,R,k);
if(R>=mid+1)
update(t[p].rson,mid+1,r,L,R,k);
push_up(p);
}
完整代码:
#include<iostream>
#include<cstdio>
#define MAXN 100010
using namespace std;
struct node
{
int vis;
int tag;
int lson,rson;
}
t[MAXN<<1];
int root,a[MAXN],tot;
void push_up(int p)
{
t[p].vis=t[t[p].lson].vis+t[t[p].rson].vis;
}
void build(int &p,int l,int r)
{
if(!p)
p=++tot;
if(l==r)
{
t[p].vis=a[l];
return;
}
int mid=(l+r)>>1;
build(t[p].lson,l,mid);
build(t[p].rson,mid+1,r);
push_up(p);
}
void push_tag(int &p,int l,int r,int k)
{
if(!p)
p=++tot;
t[p].vis+=(r-l+1)*k;
t[p].tag+=k;
}
void push_down(int p,int l,int r)
{
if(t[p].tag==0)
return;
int mid=(l+r)>>1;
push_tag(t[p].lson,l,mid,t[p].tag);
push_tag(t[p].rson,mid+1,r,t[p].tag);
t[p].tag=0;
}
void update(int &p,int l,int r,int L,int R,int k)
{
if(!p)
p=++tot;
if(L<=l&&R>=r)
{
push_tag(p,l,r,k);
return;
}
push_down(p,l,r);
int mid=(l+r)>>1;
if(L<=mid)
update(t[p].lson,l,mid,L,R,k);
if(R>=mid+1)
update(t[p].rson,mid+1,r,L,R,k);
push_up(p);
}
int query(int p,int l,int r,int L,int R)
{
if(L<=l&&R>=r)
return t[p].vis;
push_down(p,l,r);
int mid=(l+r)>>1;
int res=0;
if(L<=mid)
res+=query(t[p].lson,l,mid,L,R);
if(R>=mid+1)
res+=query(t[p].rson,mid+1,r,L,R);
return res;
}
int n,m;
int op,x,y,k;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
build(root,1,n);//建立的第一个节点即为根
for(int i=1;i<=m;i++)
{
scanf("%d",&op);
if(op==1)
{
scanf("%d%d%d",&x,&y,&k);
update(root,1,n,x,y,k);//从根开始找
//root为1,可以直接写1,不过我觉得写root更明白一些
}
else
{
scanf("%d%d",&x,&y);
printf("%d\n",query(root,1,n,x,y));
}
}
return 0;
}