动态开点线段树

前置芝士

线段树

引入

在普通的线段树中,我们一般要开 4 N 4N 4N 的数组以避免越界。然而,在一些题目中,空间限制并不允许我们这样做。这个时候,就需要使用动态开点线段树

动态开点线段树

我们来观察一下普通线段树的左儿子和右儿子的表示方法:

左儿子:p<<1

右儿子:p<<1|1

这样,虽然我们可以直接算出左右儿子,比较方便,但是,这样也浪费了大量的空间。

在学习二叉树的时候,二叉树还有哪种存储方法呢?

链式储存法,即对一个节点建立左右儿子指针,指向它的左右儿子。这样,建立新节点时,就不会浪费多余的空间。

这样一来,没有了空间的浪费,我们所需要的空间就大大减少了。对于动态开点二叉树,我们只需要开 2 N 2N 2N 的数组就可以了。

实现

动态开点线段树的实现和普通线段树差别不大,只是需要在使用节点时判断当前节点是否存在,如果不存在要建立新节点。

下面列出了与普通线段树有所不同的部分(洛谷 P3372 【模板】线段树 1
b u i l d : build: build:

void build(int &p,int l,int r)//注意p需要引用传递,因为你可能需要加入新节点
{
	if(!p)
		p=++tot;
	if(l==r)
	{
		t[p].vis=a[l];
		return;
	}
	int mid=(l+r)>>1;
	build(t[p].lson,l,mid);
	build(t[p].rson,mid+1,r);
	push_up(p);
}

p u s h _ t a g : push\_tag: push_tag:

void push_tag(int &p,int l,int r,int k)
{
	if(!p)
		p=++tot;
	t[p].vis+=(r-l+1)*k;
	t[p].tag+=k;
}

u p d a t e : update: update:

void update(int &p,int l,int r,int L,int R,int k)
{
	if(!p)
		p=++tot;
	if(L<=l&&R>=r)
	{
		push_tag(p,l,r,k);
		return;
	}
	push_down(p,l,r);
	int mid=(l+r)>>1;
	if(L<=mid)
		update(t[p].lson,l,mid,L,R,k);
	if(R>=mid+1)
		update(t[p].rson,mid+1,r,L,R,k);
	push_up(p); 
}

完整代码:

#include<iostream>
#include<cstdio>
#define MAXN 100010
using namespace std;
struct node
{
	int vis;
	int tag;
	int lson,rson;
}
t[MAXN<<1];
int root,a[MAXN],tot;
void push_up(int p)
{
	t[p].vis=t[t[p].lson].vis+t[t[p].rson].vis;
}
void build(int &p,int l,int r)
{
	if(!p)
		p=++tot;
	if(l==r)
	{
		t[p].vis=a[l];
		return;
	}
	int mid=(l+r)>>1;
	build(t[p].lson,l,mid);
	build(t[p].rson,mid+1,r);
	push_up(p);
}
void push_tag(int &p,int l,int r,int k)
{
	if(!p)
		p=++tot;
	t[p].vis+=(r-l+1)*k;
	t[p].tag+=k;
}
void push_down(int p,int l,int r)
{
	if(t[p].tag==0)
		return;
	int mid=(l+r)>>1;
	push_tag(t[p].lson,l,mid,t[p].tag);
	push_tag(t[p].rson,mid+1,r,t[p].tag);
	t[p].tag=0;
}
void update(int &p,int l,int r,int L,int R,int k)
{
	if(!p)
		p=++tot;
	if(L<=l&&R>=r)
	{
		push_tag(p,l,r,k);
		return;
	}
	push_down(p,l,r);
	int mid=(l+r)>>1;
	if(L<=mid)
		update(t[p].lson,l,mid,L,R,k);
	if(R>=mid+1)
		update(t[p].rson,mid+1,r,L,R,k);
	push_up(p); 
}
int query(int p,int l,int r,int L,int R)
{
	if(L<=l&&R>=r)
		return t[p].vis;
	push_down(p,l,r);
	int mid=(l+r)>>1;
	int res=0;
	if(L<=mid)
		res+=query(t[p].lson,l,mid,L,R);
	if(R>=mid+1)
		res+=query(t[p].rson,mid+1,r,L,R);
	return res; 
}
int n,m;
int op,x,y,k;
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	build(root,1,n);//建立的第一个节点即为根
	for(int i=1;i<=m;i++)
	{
		scanf("%d",&op);
		if(op==1)
		{
			scanf("%d%d%d",&x,&y,&k);
			update(root,1,n,x,y,k);//从根开始找
			//root为1,可以直接写1,不过我觉得写root更明白一些
		}
		else
		{
			scanf("%d%d",&x,&y);
			printf("%d\n",query(root,1,n,x,y));
		}
	}
	return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值