【状态压缩DP】互不侵犯

做过的题,但是忘了怎么做,于是当时用的搜索,搜了60分。


三、互不侵犯(King)

     在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

 

输入文件:

只有一行,包含两个数N,K ( 1 <=N <=9,  0 <= K <= N * N)

输出文件:

      方案数。

 

Sample Input

3 2

 

Sample Output

16


其实这道题不用那么麻烦,稍微牺牲一点时间,每一次对上一排都遍历所有可能的方法,而不用只枚举生成了的状态,实践证明,已经够快了。。而且这样来思维难度降低了很多


提交次数:3

1、TLE60。朴素

2、WA80。没有用long long

3、AC


#include <cstdio>
#include <string>
#include <cstring>
long getint()
{
	long rs=0;char tmp;bool sgn=0;
	do tmp = getchar();
	while (!isdigit(tmp)&&tmp-'-');
	if (tmp=='-'){tmp=getchar();sgn=1;}
	do rs=(rs<<3)+(rs<<1)+tmp-'0';
	while (isdigit(tmp=getchar()));
	return sgn?-rs:rs;
}
long n,K;
long met[4000];
long cnt[4000];
long long f[10][4000][200];
long mc = 0;
void make(long l,long s,long c)
{
	if (l == n+1)
	{
		++mc;
		met[mc] = s;
		cnt[mc] = c;
		return;
	}
	make(l+1,s,c);
	if (!(s&(1<<(l-1))))
		make(l+1,s|(1<<l),c+1);
}
int main()
{
	freopen("king.in","r",stdin);
	freopen("king.out","w",stdout);
	n = getint();
	K = getint();
	make(1,0,0);
	for (long i=1;i<mc+1;i++)
	{
		f[1][i][cnt[i]] = 1;
	}
	for (long i=2;i<n+1;i++)
	{
		for (long j=1;j<mc+1;j++)
		{
			for (long k=1;k<mc+1;k++)
			{
				for (long c=cnt[k];c<K+1;c++)
				{
					if (!(met[k]&met[j])&&
							!((met[k]>>1)&met[j])&&
							!((met[k]<<1)&met[j]))
						f[i][k][c] += f[i-1][j][c-cnt[k]];
				}
			}
		}
	}
	long long ans = 0;
	for (long i=1;i<mc+1;i++)
	{
		ans += f[n][i][K];
	}
	printf("%I64d",ans);
	return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我们来看一个具体的例子。假设有一个长度为 n 的数组 A,其中每个元素都是 0 或 1,现在需要求出所有长度为 k 的子串中,元素为 1 的个数的最小值。 传统的动态规划方法需要使用二维数组来记录状态,时间复杂度为 O(nk),空间复杂度为 O(nk)。而使用状态压缩dp,我们可以将状态压缩为一个长度为 n 的二进制数 i,其中第 j 位为 1 表示 A[j] 在当前子串中出现了一次或多次,为 0 则表示没有出现。因此,我们只需要使用一个一维数组 f 来记录当前状态的最小值即可。 具体实现如下: ```python def min_ones_in_k_substrings(A, k): n = len(A) f = [float('inf')] * (1 << n) f[0] = 0 for i in range(n): for j in range(1 << i): if bin(j).count('1') == k: ones = bin(j & ((1 << i) - 1)).count('1') + A[i] f[j] = min(f[j], f[j & ~(1 << i)] + ones) return f[(1 << n) - 1] ``` 其中,f[i] 表示状态为 i 时的最小值,初始化为正无穷。在状态转移时,我们枚举当前状态的所有子集 j,如果 j 中的元素个数等于 k,则计算 j 中包含的所有元素为 1 的个数 ones,然后更新 f[j] 的值为 f[j] 和 f[j - {i}] + ones 中的较小值。其中,j - {i} 表示将 j 中的第 i 位(即 A[i] 对应的位置)置为 0。 最终,我们返回状态为全集时的最小值 f[(1 << n) - 1] 即可。由于状态总数为 2^n,因此时间复杂度为 O(n^22^n),空间复杂度为 O(2^n)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值