9点标定源码

******************************
*创建空数组用来存放模板的中心
ImageXPix:=[]
ImageYPix:=[]
dev_get_window (WindowHandle)
*****************************
*确定好相机移动的九个物理坐标数组
WorldX:=[5,5,5,0,0,0,-5,-5,-5]
WorldY:=[-5,0,5,-5,0,5,-5,0,5]

*开始标定
i:=0

**********8
open_framegrabber ('GigEVision2',0, 0, 0, 0, 0, 0, 'progressive', -1, 'default', -1, 'false', 'default', 'ccd1', 0, -1, AcqHandle)
grab_image_start (AcqHandle, -1)
while (true)
    grab_image (Image, AcqHandle) 
    *******************
    *画模板区域
    
    if(i=0)
       
        draw_region (Region,WindowHandle)
        
        reduce_domain (Image, Region, ImageReduced)        
       
        create_shape_model (ImageReduced, 'auto', -0.39, 0.79, 'auto', 'auto', 'use_polarity', 'auto', 'auto', ModelID)
        
        i:=i+1
    
    endif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
    *******************
    *匹配模板,得到模板中心·
    find_shape_model (Image, ModelID, -0.39, 0.78, 0.5, 1, 0.5, 'least_squares', 0, 0.9, Row, Column, Angle, Score)
    if(Score>0)        
        dev_display_shape_matching_results (ModelID, 'red', Row, Column, Angle, 1, 1, 0)
        *模板中心的坐标集合

        ImageXPix:=[ImageXPix,Column]
        ImageYPix:=[ImageYPix,Row]      
    endif    
    stop()
endwhile

*************
*相机走完九个物理坐标后,手动跳出while循环
close_framegrabber (AcqHandle)

**********************
*根据三个以上点对计算反射变换矩阵
vector_to_hom_mat2d (ImageYPix, ImageXPix, WorldY, WorldX, HomMat2D)

******************
*保存和读取标定好的仿射矩阵
write_tuple (HomMat2D, 'E:/A视觉/333.tup')
read_tuple ('E:/A视觉/333.tup', HomMat2D)
dev_get_window (WindowHandle)
************************
*打开串口,与运动程序通讯
open_serial ('COM5', SerialHandle)
set_serial_param (SerialHandle, 9600, 8, 'none', 'none', 1, 1000, 'unchanged')




*******************
*利用标定好的矩阵进行实际的操作。
i:=0
open_framegrabber ('GigEVision2',0, 0, 0, 0, 0, 0, 'progressive', -1, 'default', -1, 'false', 'default', 'ccd1', 0, -1, AcqHandle)
grab_image_start (AcqHandle, -1)

while (true)
    
    grab_image (Image, AcqHandle)
    if(i=0)
        draw_region (Region,WindowHandle)
        reduce_domain (Image, Region, ImageReduced)
        get_image_size (Image, Width, Height)
        create_shape_model (ImageReduced, 'auto', -0.39, 0.79, 'auto', 'auto', 'use_polarity', 'auto', 'auto', ModelID)
        i:=i+1
    endif
    * Do something
    find_shape_model (Image, ModelID, -0.39, 0.78, 0.5, 1, 0.5, 'least_squares', 0, 0.9, Row, Column, Angle, Score)
    if(Score>0)
        dev_display_shape_matching_results (ModelID, 'red', Row, Column, Angle, 1, 1, 0)         
        *将图像中心的像素坐标仿射得到物理坐标Qy1, Qx1
        affine_trans_point_2d (HomMat2D, Height/2-1, Width/2-1, Qy1, Qx1)
        *将找到的模板中心的像素坐标仿射得到物理坐标Qy2, Qx2
        affine_trans_point_2d (HomMat2D,  Row, Column, Qy2, Qx2)       
        *求出相机中心和模板中心之间的物理距离差
                *string_send:='go2:'+5+','+5+',0'

       string_send:='go2:'+(Qx1-Qx2)+','+(Qy1-Qy2)+',0'
        *将这个物理距离差通过串口发送给运动控制程序,让相机中心移动到模板的中心位置
        write_serial (SerialHandle, ords(string_send))
        *write_serial (SerialHandle, string_send)
        try
            while(1)  
                *获得鼠标的能力  1表示鼠标左键  4表示鼠标右键               
                get_mbutton (WindowHandle, Row3, Column3, Button)
                if(Button=1)
                    grab_image (Image, AcqHandle)
                    find_shape_model (Image, ModelID, -0.39, 0.78, 0.5, 1, 0.5, 'least_squares', 0, 0.9, Row, Column, Angle, Score)
                    if(Score>0)                           
                        dev_display (Image)
                        dev_set_color ('green')
                        gen_cross_contour_xld (Cross1,Height/2-1, Width/2-1, 60, 0)
                        dev_set_color ('red')
                        gen_cross_contour_xld (Cross,  Row, Column, 15,rad(45))
                        *验证相机中心和模板中心是否基本重合
                        affine_trans_point_2d (HomMat2D,  Row, Column, Qy2, Qx2)
                        string_send:='go2:'+(Qx1-Qx2)+','+(Qy1-Qy2)+',0'
                        *将这个物理距离差通过串口发送给运动控制程序,让相机中心移动到模板的中心位置
                        write_serial (SerialHandle, ords(string_send))
                        disp_message (WindowHandle, string_send, 'window', 12, 12, 'black', 'true')
                    endif
                endif               
                if(Button=4)
                    break
                endif
            endwhile
        catch (Exception)                     
        endtry
    endif   
endwhile
close_framegrabber (AcqHandle)



下面是几种仿射变换算子的区别分析

1.  仿射变换类型

    仿射变换有:平移、旋转、缩放、斜切(就是将斜体字导正)。

2.  求稳定的特征点

    要进行仿射变换,必须先获取变换矩阵。要获取变换矩阵,必须先获取特征点坐标、角度等信息,几何匹配和bolb是获取特征点的高效方法,除此之外还有其它方法,只要能稳定的求出特征点即可。 

3.仿射变换流程

   (1.)获取特征点坐标、角度

   (2.)计算仿射变换矩阵

   (3.)对图像、区域、轮廓进行仿射变换

4. 根据特征点、角度计算仿射变换矩阵

一、 创建仿射变换矩阵

 hom_mat2d_identity( : : : HomMat2DIdentity)

   功能:产生仿射变换矩阵(产生一个空的二维空变换矩阵)

二、生产“旋转、缩放、平移、斜切”变换矩阵

hom_mat2d_rotate( : : HomMat2D, Phi, Px, Py : HomMat2DRotate)

   //功能:把旋转角度添加到仿射变换矩阵

    HomMat2D :(输入参数)仿射变换矩阵

    Phi  :旋转角度(单位弧度)

   Px   :变换的固定点行坐标。固定点是指以该点为支撑进行仿射变换  (这里是指围绕这点进行旋转)

   Py :  变换的固定点列坐标

  HomMat2DRotate:输出的旋转变换的二维矩阵

hom_mat2d_scale( : : HomMat2D, Sx, Sy, Px, Py : HomMat2DScale)

  //把缩放添加到仿射变换矩阵

   HomMat2D(输入参数):仿射变换矩阵

   Sx(输入参数):x轴方向的缩放因子

   Sy(输入参数):y轴方向的缩放因子

   Px(输入参数):变换的固定点行坐标

   Py(输入参数):  变换的固定点列坐标

   HomMat2DScale(输出参数):输出缩放变换矩阵

   

hom_mat2d_translate( : : HomMat2D, Tx, Ty : HomMat2DTranslate)

   功能:把平移添加到防射变换矩阵

   HomMat2D:(输入参数)仿射变换矩阵

   Tx(输入参数):沿x轴方向平移的距离

   Ty:输入参数):沿y轴方向平移的距离

   HomMat2DTranslate(输出参数):输出变换矩阵

 hom_mat2d_slant( : : HomMat2D, Theta, Axis, Px, Py : HomMat2DSlant)

  功能:把斜切添加到防射变换矩阵

   HomMat2D        (输入参数):仿射变换矩阵

   Theta           (输入参数):斜切角度(单位:弧度)

   Axis            (输入参数):斜切的坐标轴。取值列表:x,y

   Px               (输入参数):变换的固定点x坐标

   Py              (输入参数):变换的固定点y坐标

   HomMat2DSlant  (输出参数):输出斜切仿射变换矩阵

三、(如果有需求的时候)计算仿射变换参数

hom_mat2d_to_affine_par( : : HomMat2D : Sx, Sy, Phi, Theta, Tx, Ty)   

功能:根据仿射变换矩阵(齐次二维变换矩阵)计算仿射变换参数

    HomMat2D   (输入参数):仿射变换矩阵

    Sx          (输出参数):x方向的缩放因子(如果从图像空间变换到物理空间,就是x方向的像素单量)

    Sy          (输出参数):y方向的缩放因子(如果从图像空间变换到物理空间,就是y方向的像素单量)

    Phi         (输出参数):旋转角度

    Theta       (输出参数):斜切角度

    Tx          (输出参数):沿x方向平移的距离

    Ty          (输出参数):沿y方向平移的距离

四、对图像、region和XLD进行仿射变换

affine_trans_contour_xld(Contours : ContoursAffinTrans : HomMat2D : )

功能:对XLD轮廓进行二维仿射变换 (支持缩放,旋转,平移,斜切)

     Contours(输入参数):输入XLD轮廓

     ContoursAffinTrans(输出参数):输出变换的XLD轮廓

     HomMat2D(输入参数):仿射变换矩阵

affine_trans_image(Image : ImageAffinTrans : HomMat2D, Interpolation, AdaptImageSize : )

 功能:对图像轮廓进行二维仿射变换 (支持缩放、旋转、平移,斜切)

   Image          (输入参数):输入图像

  ImageAffinTrans (输出参数):变换后的图像

  HomMat2D      (输入参数):仿射变换矩阵

  Interpolation    (输入参数):插值算法。参数值列表 nearest_neighbor,bilinear,constant,weighted

  AdaptImageSize  (输入参数):结果图像尺寸是否自适应。默认值:false

  affine_trans_region(Region : RegionAffineTrans : HomMat2D, Interpolate : ) 

功能:对区域进行任意二维仿射变换

  Region              (输入参数):输入区域

  RegionAffineTrans   (输出参数):变换的区域

  HomMat2D            (输入参数):仿射变换矩阵

  Interpolate          (输入参数):插值算法。默认值:nearest_neighbor。参数值列表:constant,nearest_neighbor

    affine_trans_polygon_xld(Polygon:PolygonsAffinTrans:HomMat2D:)

    功能:对XLD多边形进行任意二维仿射变换

    Polygon(输入参数):输入XLD多边形

    PolygonsAffinTrans(输出参数):变换的XLD多边形

    HomMat2D(输入参数):仿射变换矩阵

    affine_trans_point_2d(::HomMat2D,Px,Py:Qx,Qy)

    功能:对点进行任意二维仿射变换,(支持缩放、旋转、平移、斜切)

    HomMat2D(输入参数):仿射变换矩阵

    Px(输入参数):原始点x或行坐标

    Py(输入参数):原始点y或列坐标

    Qx(输出参数):变换点x或行坐标

    Qy(输出参数):变换点y或列坐标

    affine_trans_pixel(::HomMat2D,Row,Col:RowTrans,ColTrans)

    功能:对像素进行任意二维仿射变换

     HomMat2D(输入参数):仿射变换矩阵

     Row(输入参数):输入像素行坐标

     Col(输入参数):输入像素列坐标

     RowTrans(输出参数):变换的像素行坐标

     ColTrans(输出参数):变换的像素列坐标

    注:affine_trans_point_2d与affine_trans_pixel的区别:affine_trans_pixel使用的图像坐标系的原点在图像的左上角,affine_trans_point_2d使用标准图像坐标系,原点在左上角像素的中心

   vector_angle_to_rigid(::Row1,Column1,Angle1,Row2,Column2,Angle2:HomMat2D)

  功能:根据点和角度计算刚性仿射变换矩阵,支持旋转和平移

  Row1(输入参数):原始点行坐标

  Column1(输入参数):原始点列坐标

  Angle1(输入参数):原始点角度

  Row2(输入参数):变换的目的点行坐标

  Column2(输入参数):变换的目的点列坐标

  Angle2(输入参数):变换的目的点角度

  HomMat2D(输出参数):输出仿射变换矩阵

五.根据两个以上特征点计算仿射变换矩阵

    vector_to_rigid(::Px,Py,Qx,Qy:HomMat2D)

    功能:根据两个以上点对计算计算刚性仿射变换矩阵,支持旋转和平移

    Px:(输入参数)原始点组的x坐标

    Py:(输入参数)原始点组的y坐标

    Qx:(输入参数)变换的目的点组的x坐标

    Qy:输入参数)变换的目的点组的y坐标

    HomMat2D:(输出参数)输出仿射变换矩阵

    vector_to_similarity(::Px,Py,Qx,Qy:HomMat2D)

    功能:根据两个以上点对计算相似仿射变换矩阵,支持旋转、平移和缩放

    Px:(输入参数)原始点组的x坐标

    Py:(输入参数)原始点组的y坐标

    Qx:(输入参数)变换的目的点组的x坐标

    Qy:(输入参数)变换的目的点组的y坐标

    HomMat2D:(输出参数)输出仿射变换矩阵

六.根据三个以上特征点获取仿射变换矩阵

   vector_to_hom_mat2d(::Px,Py,Qx,Qy:HomMat2D)

    功能:根据三个以上点对计算仿射变换矩阵,支持旋转、平移、缩放、斜切

    Px:(输入参数)原始点组的x坐标

    Py:(输入参数)原始点组的y坐标

    Qx:(输入参数)变换的目的点组的x坐标

    Qy:(输入参数)变换的目的点组的y坐标

    HomMat2D:(输出参数)输出仿射变换矩阵

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值