【高等数学】第 2 讲 两个重要的极限定理

文档后续更新地址:【高数基础】

第 2 讲 两个重要的极限定理


image-20200614130823115

两个重要极限:

  • lim ⁡ n → ∞ ( 1 + 1 n ) n = e {\lim \limits_{n \to \infty} (1+\dfrac{1}{n})^n = e} nlim(1+n1)n=e
  • lim ⁡ x → 0 s i n x x = 1 {\lim \limits_{x \to 0} \dfrac{sinx}{x}=1} x0limxsinx=1

2.1 第一个重要极限定理的证明

  • 【证明】 lim ⁡ n → ∞ ( 1 + 1 n ) n = e {\lim \limits_{n \to \infty} (1+\dfrac{1}{n})^n = e} nlim(1+n1)n=e

先证明极限存在:

image-20200614132058057

image-20200614132325769

image-20200614132409019

image-20200614132712283

image-20200614132732927

image-20200614132844460

image-20200614132953969

  • 计算机表示:

image-20200614133100927

2.2 夹逼定理

  • 引理:夹逼定理

image-20200614133337354

image-20200614133612961

image-20200614133644986

2.3 第二个重要极限定理的证明

  • 【证明】 lim ⁡ x → 0 s i n x x = 1 {\lim \limits_{x \to 0} \dfrac{sinx}{x}=1} x0limxsinx=1

使用夹逼定理来证明

image-20200614134217975

image-20200614134247375

image-20200614134309921

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WuGenQiang

谢谢你的喜欢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值