1,整数在内存中的存储
整数二进制表示有三种方式:原码,反码,补码。
对于整数来说内存中其实存的是补码。
2.大小端字节序和字节序判断
2.1,什么是大小端
其实超过一个字节的数据在内存中存储时就有存储顺序的问题,按照不同的存储顺序有不同的存储方式。分为大端字节序存储和小端字节序存储,其具体概念如下:
大端存储:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容保存在内存的低地址处。
小端存储:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容保存在内存的高地址处。
那什么是数据的高低字节,和内存的高低地址呢?
答:例如,十进制的1234,从右到左是低字节到高字节。而地址则从左到右是低地址到高地址。
2.3 练习
代码1:写一个代码来判断当前机器是大端存储还是小端存储。
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{
int a = 1;
if ((*(char*)&a) == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
}
代码2:通过一个代码来观察不同类型的整形的打印
int main()
{
char a = -1;
signed char b = -1;
unsigned char c = -1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
那为什么打印的结果是这个呢?
每个元素本来都是整型,但由于都变为char类型了,所以都要截断,由4个字节变为1个字节。当再以%d打印时又要整型提升从1个字节升为4个字节,在这个过程中就会发生许多变化可能导致值发生变化。
代码3:
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
解析:从图中可以看出最后原码变为了11111111111111111111111110000000,而它的十进制就是打印出来的那个数。
代码4:
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d",strlen(a));
return 0;
}
分析:
代码相当于从-1开始转了一圈到了0,而\0的ASCII码值就是0,所以当到了0就停止了,因此128+127=255
代码5:
int main()
{
for (i = 0; i <= 255; i++)
{
printf("hello world\n");
}
return 0;
}
为什么会陷入死循环呢?
解析:
从图中可以看出无符号的char的取值就只要0到255。所以这个程序永远不会大于255跳出循环。
代码6:
#include<windows.h>
int main()
{
unsigned int i ;
for (i = 9; i >= 0; i--)
{
printf("%u\n",i);
sleep(1);
}
return 0;
}
这个代码会一直循环,因为这里i是无符号的,所以永远不会小于0。
3 浮点数在内存中的存储
常见的浮点数有:3.1415,1E10即1*10^10,浮点数家族包括:float,double,long double类型。
从下面一个代码入手来了解浮点数:
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n", pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n",* pFloat);
return 0;
}
要很好地解释这个代码就要理解浮点数是怎么存储的,下面就来解释浮点数是怎么存储的,解释完就来解释这个代码。
3.1,浮点数的存储
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
3.1.1浮点数存的过程
IEEE 754对有效数字M和指数E,还有⼀些特别规定。
前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表⽰⼩数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
⾄于指数E,情况就⽐较复杂。
⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
从上面可以看出浮点数的储存先是将浮点数转化为
的形式写成二进制的形式,就是其在计算机中的储存形式,但是在查看是计算机是以十六的形式展现的。
现在可以来看前面的那个代码了
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n", pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n",* pFloat);
return 0;
}
对于第一个和最后一个不需要多做解释。对于第二个打印,是因为最后算出来结果已经无限接近于0了,而且浮点数打印最多也就打印6位,所以最终打印出来为0.
对于第三个打印由上面就可以看出来最后转化出来的二进制是是一个很大的数。