【电路笔记】-戴维南定理(Thevenin‘s Theorem)

戴维宁定理是线性电路分析的重要工具,它表明任何线性电路都等效于一个理想电压源与等效电阻的串联。文章详细介绍了定理的起源、适用条件、模型确定方法,并通过单电压源、单电流源以及多源电路的实例,阐述了如何求解等效电压VTh和等效电阻RTh,展示了戴维宁定理在简化电路分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

戴维南定理(Thevenin’s Theorem)


在本文中,我们将介绍一种强大的方法,可以通过一些转换步骤将复杂电路简化为基本电路,这种方法通常称为戴维南定理(Thevenin’s Theorem)。

德国物理学家赫尔曼·冯·亥姆霍兹 (Hermann von Helmholtz) 在 1853 年首次证明了该定理,但历史保留了法国工程师莱昂·戴维宁 (Leon Thevenin) 的名字,他在 1883 年不知道亥姆霍兹的工作的情况下,提出了一种更优雅的方法来证明该定理 。

戴维南定理证实,任何线性电路都等效于与等效电阻串联的理想电压源。

1、概述与定义

戴维宁定理只能应用于线性电路(LEC)。 LEC的内部结构由互连的理想源和电阻组成。 必须排除诸如电容器和电感器之类的电抗元件,因为它们的电压/电流特性不是由线性公式描述的。

理想电压源由发电机组成,无论电路中流动的电流如何,该发电机都能提供恒定的电压值。 这意味着相同的理想电源将始终为连接在其端子上的任何电路提供相同的电压 V s V_s Vs。 该特性确保理想电压源的电压/电流特性是恒定的,因此是线性的。

在这里插入图片描述

图1:理想电压源及其电压/电流特性的表示

理想电流源也可以在线性电路中找到,并且由发电机组成,无论其端子上的电压如何,都可以提供恒定的电流值。 下面的图 2 给出了理想电流源及其电压/电流特性的表示:

在这里插入图片描述

图2:理想电流源及其电压/电流特性的表示

等效电阻器 R e q R_{eq} Req只是一个概念,表示一组互连电阻器( R 1 、 R 2 . . . R_1、R_2... R1R2...)与单个组件的关联。 电阻器的关联由两个规则决定:

  • 如果电阻器共享相同的电流(串联),则等效电阻为电阻器之和。
  • 如果电阻器共享相同的电压(并联),则等效电阻的倒数是电阻器倒数之和。

在这里插入图片描述

图3:等效电阻关联规则

在这里插入图片描述

图4:戴维宁变换的图示

从戴维南变换获得的更简单的电路称为戴维南模型。 等效源和阻力用下标 Th 标记,作为定理名称的参考。

在下一节中,我们将给出抽象方法,以便从任何线性电路中确定该模型。

2、戴维南模型确定

本节的目标是介绍戴维宁参数 V T h V_{Th} VTh R T h R_{Th} RTh 是如何确定的。

戴维南电压 V T h VTh VTh是负载断开时线性电路端点之间的电压,也称为开路电压。

类似地,戴维南电阻 R T h R_{Th} RTh 是当负载断开并且电路中所有源都被禁用、电压源被短路取代、电流源被开路取代时电路端点处的电阻。

因此,我们建议遵循一系列步骤来确定任何线性电路戴维宁模型:

  • 1)移除线性电路端点上的负载
  • 2)计算开路电压
  • 3)更换所有短路的电压源和开路的电流源
  • 4)计算等效电阻
  • 5)重新连接负载并借助 V T h V_{Th} VTh R T h R_{Th} RTh 的知识绘制戴维宁模型

在下一节中,我们通过确定一些架构复杂性增加的 线性电路示例的戴维宁模型来说明该方法。

3、一些线性电路的戴维南模型

3.1 单电压源

对于第一个示例,我们考虑仅由一个电压源和两个电阻并联配置组成的基本线性电路:

在这里插入图片描述

图5:线性电路单电压源

为了确定戴维宁模型,首先,我们继续执行上一节中解释的步骤 1 和 2。 当从电路中断开负载 Z Z Z 时,我们通过应用分压器方法计算线性电路端点处的电压,即电阻器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值