yolo fastest v2 数据集训练步骤

1,收集数据集,train,val文件夹
2,labelimg标注数据集,yolo数据格式
3,运行train和val内jpg2listtxt.bat生成各自的list.txt
4,修改category.names,每个类一行
5,生成anchors锚点数据
python genanchors.py --traintxt train/list.txt
6,修改training.data内anchors和classes的类目数量
7,训练数据集
python train.py --data ./training.data
8,效果评估(pth文件名称为训练后生成的文件名称)
python evaluation.py --data training.data --weights weights/coco.pth
9,测试效果
python test.py --data training.data --weights weights/coco.pth --img train/xxx.jpg
10,转换成onnx模型
python pytorch2onnx.py --data training.data --weights weights/xxx.pth --output onnx/hand.onnx
11,安装onnxsim库,对onnx模型裁剪优化
python -m onnxsim onnx/hand.onnx onnx/hand-opt.onnx

其中jpg2listtxt.bat代码

dir /b/s/p/w *.jpg > list.txt
pause

其他py文件请直接github下载yolofastestv2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wukongxuetang

如果文章对你的工作有帮助就鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值