论文精读:YOLO-UniOW: Efficient Universal Open-World Object Detection


前言

 本文介绍一篇来自Tencent的开放词汇和世界检测结合的论文:Yolo-uniow开源地址

1、出发点

 本篇论文相当于开辟了一个新任务,将开放词汇检测世界检测融合到一个任务:在给定一系列text prompt后,除了检测出对应单词的边界框,还要将其余未知的物体检测为"Unknown"。贴一张论文示例图:

在这里插入图片描述
在这里插入图片描述

2、方法

 底下是论文总体结构图,在yolo-world基础上衍生出来的,总体来看结构比较简单,Detector用到的是yolov10,包含两个assign head: one2many和one2one;TextEncoder启用了LoRA微调,然后设计了一个通配符Wildcard Learning策略(其实就是object类别的嵌入向量),来挖掘Unknown物体。下面将逐一介绍。
在这里插入图片描述

2.1.符号说明

在这里插入图片描述

 上述三个标黄的公式其实就是论文要实现功能。其中 c k c_k ck表示已知的文本类别; C u n k C_{unk} Cunk为未知的类别, T w T_w Tw就是通配符wildcard learning;当然,作为开放世界检测模型,需要能够不断从Unknown中迭代出新类别来更新 c k c_k ck,也就是第3个公式中表达意思。

2.2.Efficient Adaptive Decision Learning

 论文创新点之一,但实际上就是 LoRA微调 TextEncoder。

2.3.Open-World Wildcard Learning

 这里主要介绍下通配符学习策略,看模型是如何在train stage筛选Unknown物体的。先说两个子训练stage:

  1. 先训练open-vocabulary-detector,即完成类似yolo-world的训练;
  2. 设置可学习嵌入向量wildcard embedding,代表含义是 object,监督信息是所有box;
  3. 在完成上述训练后,需要将两个部分结合起来,将wildcard embedding发现所有物体的能力迁移到open-vocabulary部分:但结合时候会出现问题,因为通配符检测结果跟open-vocabulary的一部分检测框是重叠的,需要过滤掉。而将未过滤的则是 Unkonwn 物体,将其交给可学习嵌入向量Unkonwn Wildcard。

 而具体筛选策略就是通过底下公式:
在这里插入图片描述
也可以按照下图示例说明:当迭代发现新的类别即CurrentKnown时,跟绿色的GTbox做监督训练。而Well-tuned Wildcard检测出 0.0001和0.2和0.8的虚线框,其中0.001因阈值太低过滤掉,而0.2去分配给Unkonwn Wildcard,而0.8因跟GTbox交并比过大也被过滤掉了
在这里插入图片描述

3、实验结果

在这里插入图片描述
 比yolo-world高。
在这里插入图片描述
 LoRA微调TextEncoder涨点儿明显。

总结

 总体来说结合起来挺有意思,从另一个角度来解决open-world问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值