用OpenDataLab下载PASCAL VOC 2007等公开数据集

OpenDataLab提供丰富多样的数据集资源,包括PascalVOC2007,集成了搜索、可视化和下载功能,帮助企业/机构快速找到并训练AI模型。通过SDK或直接下载,享受无广告、跨语言的优质体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenDataLab

OpenDataLab 公开数据集平台,集海量优质的多模态数据集资源、数据集智能检索、数据可视化展示、数据在线预览、下载优化、标准化管理等功能于一体,力争将平台打造成企业、高校、科研机构等的AI 模型训练的必备利器,帮大家解决数据集烦恼。

官网

OpenDataLab解决方案

  • 收录了海量最新、热门、经典的数据集,涵盖30+应用场景、20+的标注类型;
  • 平台提供了极简的数据集搜索路径,只需2步:打开网址,输入关键字,即可查询;
  • 支持中英双语版本切换,全程无广告,无需登录、无需VPN,极佳的使用体验。

Pascal VOC 2007数据集介绍

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

在这里插入图片描述

类定义

  • aeroplane
  • bicycle
  • bird
  • boat
  • bottle
  • bus
  • car
  • cat
  • chair
  • cow
  • diningtable
  • dog
  • horse
  • motorbike
  • person
  • pottedplant
  • sheep
  • sofa
  • train
  • tvmonitor

方法一:用SDK下载数据

步骤1:安装openxlab

pip install openxlab

步骤2:登陆openxlab账号

openxlab login

获取密钥管理,复制Access Key ID,输入后,再次复制Secret Access Key。

在这里插入图片描述
dataset_repo为你要下载的数据路径,target_path为下载文件指定的本地路径

from openxlab.dataset import get
get(dataset_repo='OpenDataLab/PASCAL_VOC2007', target_path='PascalVOC2007/images') 



下载完成!

可能会遇到遇到问题:

403: {“code”:403,“msg”:{“en”:“To better provide you with data services, please go to the PC version of this dataset detail page and click “Download” to fill out the user information collection form.”,“zh”:“To better provide you with data services, please go to the PC version of this dataset detail page and click “Download” to fill out the user information collection form.”}}

多尝试几次就好了。

方法2:直接下载

在这里插入图片描述

### Pascal VOC 2007 数据集下载与使用说明 Pascal VOC 2007 是计算机视觉领域中的一个重要数据集,主要用于目标检测和分类任务。它包含了丰富的图像资源以及详细的标注信息,适合用于训练和评估机器学习模型。 #### 下载方式 可以通过 OpenDataLab 平台轻松获取 Pascal VOC 2007 数据集[^1]。此平台收录了大量经典、热门的数据集,并提供了便捷的搜索功能。只需访问其网站并输入关键词“Pascal VOC 2007”,即可找到对应的数据集页面进行下载。 如果需要更高效的下载体验,也可以参考其他第三方提供的镜像链接或工具。例如,在某些开源项目中会提供额外的支持服务,如通过百度网盘加速下载类似的公共数据集[^3]。 #### 文件结构与格式介绍 Pascal VOC 2007 的主要组成部分包括: - **JPEGImages**: 存储原始图片文件。 - **Annotations**: XML 格式的标注文件,记录每张图片的目标类别及边界框位置。 - **ImageSets/Main**: 列表文件定义哪些样本属于训练集(train)、验证集(val),或者两者组合而成的 trainval 集合。 这些目录共同构成了完整的数据体系,便于开发者按照标准流程加载和处理数据。 #### 使用指导 为了方便利用该数据集开展实验活动,可以借助 PyCharm 实现远程调试环境配置,具体操作涉及设置 AutoDL 训练框架并与本地 IDE 建立连接[^4]。此外还需要注意调整参数以适配特定硬件条件下的性能需求。 以下是简单的 Python 脚本示例展示如何读取部分基本信息: ```python import xml.etree.ElementTree as ET from pathlib import Path def parse_voc_annotation(ann_dir, img_ids): all_boxes = [] for img_id in img_ids: annotation_file = ann_dir / f"{img_id}.xml" tree = ET.parse(annotation_file.open()) root = tree.getroot() boxes = [] for obj in root.findall('object'): label = obj.find('name').text bbox = obj.find('bndbox') xmin = int(bbox.find('xmin').text) ymin = int(bbox.find('ymin').text) xmax = int(bbox.find('xmax').text) ymax = int(bbox.find('ymax').text) boxes.append((label, (xmin, ymin), (xmax, ymax))) all_boxes.append(boxes) return all_boxes if __name__ == "__main__": annotations_path = Path("path/to/annotations") image_set_main = Path("path/to/ImageSets/Main/train.txt") with open(image_set_main, 'r') as f: ids = [line.strip() for line in f.readlines()] parsed_data = parse_voc_annotation(annotations_path, ids[:5]) print(parsed_data) ``` 上述代码片段展示了从 `Annotations` 中解析前五个样例的具体方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进阶媛小吴

规则简单易懂,粗暴却完美!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值