PyTorch--残差网络(ResNet)在CIFAR-10数据集进行图像分类

完整代码



import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
num_epochs = 80
batch_size = 100
learning_rate = 0.001

# Image preprocessing modules
transform = transforms.Compose([
    transforms.Pad(4),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])

# CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                             train=True, 
                                             transform=transform,
                                             download=True)

test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                            train=False, 
                                            transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=stride, padding=1, bias=False)

# Residual block
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

# ResNet
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[1], 2)
        self.layer3 = self.make_layer(block, 64, layers[2], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)
        
    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out
    
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)


# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# For updating learning rate
def update_lr(optimizer, lr):    
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    # Decay learning rate
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)

# Test the model
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')

这段代码是一个PyTorch实现的残差网络(ResNet),用于在CIFAR-10数据集上进行图像分类任务。下面是代码的详细解析:

代码解析

导入必要的库

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

导入PyTorch及其神经网络模块、torchvision库用于处理图像数据。

设备配置

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

设置运行设备,优先使用GPU,如果没有GPU,则使用CPU。

超参数设置

num_epochs = 80
batch_size = 100
learning_rate = 0.001

设置训练轮数、批次大小和学习率。

数据预处理

transform = transforms.Compose([
    transforms.Pad(4),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])

定义数据预处理步骤,包括填充、随机水平翻转、随机裁剪和转换为张量。

加载CIFAR-10数据集

train_dataset = torchvision.datasets.CIFAR10(root='../../data/', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='../../data/', train=False, transform=transforms.ToTensor())

加载CIFAR-10训练集和测试集。

创建数据加载器

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

创建用于加载数据的DataLoader。

定义3x3卷积函数

def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)

定义一个3x3的卷积层。

定义残差块

class ResidualBlock(nn.Module):
    # ...

定义残差网络中的残差块,包含两个卷积层和批量归一化层。

定义ResNet模型

class ResNet(nn.Module):
    # ...

定义ResNet模型,使用残差块构建多个层。

实例化模型并移动到设备

model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

创建ResNet模型实例并将其移动到配置的设备上。

定义损失函数和优化器

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

定义交叉熵损失函数和Adam优化器。

学习率衰减函数

def update_lr(optimizer, lr):    
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

定义一个函数用于更新优化器的学习率。

训练模型

for epoch in range(num_epochs):
    # ...
    # 每20个epoch衰减学习率
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)

执行训练循环,包括前向传播、损失计算、反向传播和参数更新,并每20个epoch衰减学习率。

测试模型

model.eval()
with torch.no_grad():
    # ...

在测试阶段,设置模型为评估模式,并计算准确率。

保存模型

torch.save(model.state_dict(), 'resnet.ckpt')

保存模型的状态字典。

这段代码实现了一个标准的ResNet架构,用于CIFAR-10数据集的分类任务。代码中包含了数据预处理、模型定义、训练过程、测试评估和模型保存等关键步骤。

常见函数及其用法

以下是代码中使用的常见函数及其解析:

  1. torch.device

    • 格式:torch.device(device_str)
    • 参数:device_str —— 设备类型字符串(如’cuda’或’cpu’)。
    • 意义:确定模型和张量运行的设备。
    • 用法示例:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  2. torchvision.datasets.CIFAR10

    • 格式:torchvision.datasets.CIFAR10(root, train, transform, download)
    • 参数:指定数据集的路径、是否为训练集、预处理变换、是否下载数据集。
    • 意义:加载CIFAR-10数据集。
    • 用法示例:train_dataset = torchvision.datasets.CIFAR10(root='../../data/', train=True, transform=transform, download=True)
  3. torch.utils.data.DataLoader

    • 格式:torch.utils.data.DataLoader(dataset, batch_size, shuffle)
    • 参数:数据集对象、批次大小、是否打乱数据。
    • 意义:创建数据加载器,用于批量加载数据。
    • 用法示例:train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
  4. nn.Conv2d

    • 格式:nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
    • 参数:输入通道数、输出通道数、卷积核大小、步长、填充。
    • 意义:创建二维卷积层。
    • 用法示例:return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
  5. nn.BatchNorm2d

    • 格式:nn.BatchNorm2d(num_features)
    • 参数:特征数量。
    • 意义:创建二维批量归一化层。
    • 用法示例:self.bn1 = nn.BatchNorm2d(out_channels)
  6. nn.ReLU

    • 格式:nn.ReLU(inplace=True/False)
    • 参数:是否使用内存原地(inplace)优化。
    • 意义:创建ReLU激活层。
    • 用法示例:self.relu = nn.ReLU(inplace=True)
  7. nn.Sequential

    • 格式:nn.Sequential(*modules)
    • 参数:一个模块序列。
    • 意义:按顺序应用多个模块。
    • 用法示例:downsample = nn.Sequential(conv3x3(self.in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels))
  8. nn.CrossEntropyLoss

    • 格式:nn.CrossEntropyLoss()
    • 意义:创建交叉熵损失层,用于多分类问题。
    • 用法示例:criterion = nn.CrossEntropyLoss()
  9. torch.optim.Adam

    • 格式:torch.optim.Adam(params, lr)
    • 参数:模型参数、学习率。
    • 意义:创建Adam优化器。
    • 用法示例:optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
  10. .to(device)

    • 格式:.to(device)
    • 参数:设备对象。
    • 意义:将模型或张量移动到指定设备。
    • 用法示例:images = images.to(device)
  11. view

    • 格式:view(size)
    • 参数:新的大小。
    • 意义:重塑张量。
    • 用法示例:out = out.view(out.size(0), -1)
  12. max

    • 格式:max(dim, keepdim)
    • 参数:计算最大值的维度、是否保持维度。
    • 意义:计算并返回张量在指定维度上的最大值和索引。
    • 用法示例:_, predicted = torch.max(outputs.data, 1)
  13. no_grad

    • 格式:torch.no_grad()
    • 意义:上下文管理器,用于禁用梯度计算。
    • 用法示例:with torch.no_grad():
  14. sum

    • 格式:sum(dim, keepdim)
    • 参数:求和的维度、是否保持维度。
    • 意义:计算张量在指定维度的和。
    • 用法示例:correct += (predicted == labels).sum().item()
  15. torch.save

    • 格式:torch.save(obj, f)
    • 参数:要保存的对象、文件路径。
    • 意义:保存对象到文件。
    • 用法示例:torch.save(model.state_dict(), 'resnet.ckpt')

这些函数和类是构建、训练和测试PyTorch模型的基础,涵盖了设备配置、数据加载、模型定义、训练过程、测试评估和模型保存等关键步骤。

运行过程

在整体进行一些可视化改进之后,可以看到效果图如下图所示:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值