1. 区间二型T-S模糊模型
区间二型T-S模糊系统可以等价表示具有不确定模糊权重的一型T-S模糊系统。
不确定性的迹(FOU)
区间二型模糊集:
集合中主隶属度所组成的区域称为FOU:
FOU的上下边界分别称为上、下隶属度函数,分别记为:
2 扇区非线性与局部近似
2.1 扇区非线性
2.2 局部近似
局部近似技术会导致模糊模型规则数量的减少。然而,基于近似后的模糊模型设计控制律可能无法保证原始非线性系统在这些控制律下的稳定性。缓解该问题的方法之一是引入鲁棒控制器设计。
3 论文学习
Stability Analysis of Interval Type-2 Fuzzy-Model-Based Control Systems
本文提出了一种区间2型模糊模型和区间2型模糊控制器,利用李雅普诺夫方法推导出基于LMI的稳定性条件。并利用松弛矩阵放松稳定性的条件。
论文首先利用隶属度的上下界建立区间二型模糊模型,然后得出区间二型模糊控制器。基于上述构建的模糊模型以及模糊控制器,引入二次型李雅普诺夫函数V,求出 ,为简化表达式使其符合一般形式,进行变量替换得出21式,得出稳定性条件Θ<0。接着利用隶属函数的特性,引入松弛矩阵以降低稳定性条件的保守性。首先得到22式并进行展开,其次是26式并展开。因此根据分析可以得到Θ<=Θ+Ξ+Φ,即28式。接着引入变量表示29-37式,为推导基于LMI的稳定性条件做准备。因此可以得出38式,进而得到基于LMI的稳定性条件,即定理1。
相关概念理解:
1.一型模糊系统的隶属度为一个确定的值,二型模糊系统的隶属度为一个模糊集合,区间二型模糊系统的隶属度为一个区间。
2.模糊系统用来处理不确定、模糊、非线性的问题。