信号处理时,经常会遇到时频域补0,或者插0的场景;
现在仅从时域角度出发,看频域上的变化。
1)补0的场景
时域补0,频域插值。
2)等间隔内插0
上变频,频域产生周期延拓
参考信号的抽取和内插:信号抽取与内插PPT
傅里叶的尺度变化特性,频域上的压缩和展宽,针对的周期上,对采样率归一化。
下面以matlab的代码仿一下看看
时域补0后,会看到频域上出现了纹波,由于频谱泄露造成,会发现出现了一些不和谐的频率分量。
clc;clear;close all;
f1 = 50;
f2 = 100;
A1 = 5;
A2 = 10;
p = 0;
fs = 1024;
ts = 1/fs;
N = 128;
T = N*ts;
t = linspace(0,T,N);
st = A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t);
fft_st = fft(st,N);
figure
plot(abs(fft_st));
%%%%%%%%%%%%在序列尾部补0%%%%%%%%%%
st_tail = [st zeros(1,128)];
fft_tail_st = fft(st_tail,256);
figure
plot(abs(fft_tail_st));
%%%%%%%%%%%%在中间尾部补0%%%%%%%%%%
st_mid = [st(1:128/2) zeros(1,128) st(128/2+1:end)];
fft_mid_st = fft(st_mid,256);
figure
plot(abs(fft_mid_st));
%%%%%%%%%%%%在等间隔插0%%%%%%%%%%
st_interpolation = zeros(1,256);
st_interpolation(1:2:end) = st(1:end);
fft_mid_st = fft(st_interpolation,256);
figure
plot(abs(fft_mid_st));