标题翻译:用于点云补全的级联优化网络
注:github源码还未公开,所以以下是自己不太成熟的理解…
1.Abstract
点云是稀疏且不完整的,已经存在的方法很难生成物体的细节、学习到复杂的点分布。
因此我们提出一种级联优化网络,使用一种从粗糙到细节的策略,来合成点云的细节信息。
考虑到局部输入的局部细节以及全局形状信息,我们保留不完整点集中的现有细节,并以较高的准确率生成具有的缺失部分。
我们还设计了一个patch-based discriminator,以确保每个局部区域都具有与ground truth一样真实细节,以学习复杂的点分布。
2.Introduction
尽管在图像的生成、风格迁移、合成方面已经获得成功,但是因为点云的稀疏、无序和不完整,所以进行点云补全依旧是一件很具挑战性的事情。而且很难学习到准确的点云特征和不同的点分布使得这项任务更加艰难。
通常有以下方式处理3D completion
方式 | 缺点 |
---|---|
体素 | 体素格式的3D shape 因为内存限制,很难生成高分辨率的Object |
网格 | 网格表示的方法可以生成复杂的surface,但是受限于顶点的固定连接方式 |
(点云无序,无固定连接)
3D completion已提出的论文
论文名 | 简述 |
---|---|
Pcn: Point completion network | 基于ShapeNet和KITTI数据集的 encoder-decoder管道 |
TopNet | 一个层级的根树结构解码器 |
function space | 需要post-processing 后期处理完善输出 |
它们无法产生具有详细几何信息的物体
文章的主要目的:
We propose to synthesize the dense and complete objects shapes in a cascaded refinement manner, and jointly optimize the reconstruction loss and an adversarial loss endto-end.
以端到端的方式,合成一个具有密集点并且形状完整的物体(利用级联优化网络),并且优化重建损失函数和对抗损失函数。
(ps:看result,感觉生成效果不如上采样网络处理的效果好)
再次总结,本篇文章的主要贡献(其实就是Abstract总结的内容):
• We propose a novel point cloud completion network which is able to preserve object details from partial points and generate missing parts with fine details at the same time;
• Our cascaded refinement strategy together with the coarse-to-fine pipeline can refine the points positions locally and globally;
• Experiments on different datasets show that our framework achieves superior results to exi