帧内压缩与帧间压缩

帧内压缩

帧内(Intraframe)压缩也称为空间压缩(Spatial compression)。当压缩一帧图像时,仅考虑本帧的数据而不考虑相邻帧之间的冗余信息,这实际上与静态图像压缩类似。帧内一般采用有损压缩算法,达不到很高的压缩比。

在视频中,帧内压缩就是压缩 GOP 图像组中的 I 帧。

帧内压缩是空域, 在空间XY轴进行压缩,进行压缩参考本帧数据,压缩率较小。

预测模式

一共有 9 种预测模式,如下图,第一种是按照纵向预测,第二种是横向预测,第三种是求平均值,

帧间压缩

帧间压缩(Interframe compression)也称为时间压缩(Temporal_compression),是基于许多视频或动画的连续前后两帧具有很大的相关性(即连续的视频其相邻帧之间具有冗余信息)的特点来实现的;通过比较时间轴上不同帧之间的数据实施压缩,进一步提高压缩比。

在视频中,帧内压缩就是压缩 GOP 图像组中的 B 帧与 P 帧。

帧间压缩的主要过程先进行宏块查找,寻找出残差值,进行运动矢量计算,最后通过残差值和运动矢量推算出下一帧的数据。

宏块查找:查找帧之间有差别的部分,算法有:三步搜索,二维对数搜索,四步搜索,钻石搜索等;

残差值是指帧之间有差别的部分;

运动矢量:当前编码块与其参考图像中的最佳匹配块之间的相对位移,也就是变化部分下一帧与上一帧的位移;

运动估计:针对当前块从上一帧中搜索最相似的块;

运动补偿:通过残差值和运动矢量推断出下一帧的数据;

概念不容易懂,举个离职:

比如两张相邻的帧之间,一个人在说话,此时只有嘴巴是动的,就可以不用考虑其他部分,只找到帧之间有差别的部分,这就叫宏块查找,帧之间有差别的部分就叫残差值,记录下来嘴巴相对于上一帧变动的坐标,这就是运动矢量,嘴巴动的过程在宏块中的变化就叫运动估计。

通过上面的计算流程之后,不需要存储下一帧完整图片,只需要记录残差值和运动矢量,就可以推断出下一帧的数据,这就是运动补偿。

帧内压缩与帧间压缩都属于有损压缩。

视频花屏的产生原因:一组 GOP 中有帧丢失,主要是 P 帧和 B 帧的丢失,这样残差值和运动矢量也会丢失,造成了当前帧解码失败,就会出现花屏。

视频卡顿的原因:当有帧丢失,就丢弃 GOP 内所有帧,直到下一个 I 帧出现,重新刷新图像。I 帧是 GOP 的第一帧,时间周期可能长,等待下一个 I 帧来之前的这段时间,就会出现卡顿。

这两者是不能同时兼顾的,比如微信视频通话没有花屏,但是会出现卡顿。一般视频录制的时候一般会有花屏,但不会出现卡顿。

### 帧内压缩压缩的关系及区别 #### 1. 定义基本概念 帧内压缩(Intra-frame Compression)是指在同一内部进行的数据压缩,不依赖于其他的信息。这种压缩方式主要通过去除图像的空冗余来实现数据量减少[^3]。 压缩(Inter-frame Compression),也称为时压缩,则是在多个连续寻找相似性重复模式来进行压缩。这种方式可以显著降低视频流的整体比特率,因为它不仅减少了单个画面内的信息量,还消除了不同的冗余部分[^1]。 #### 2. 技术特点对比 - **空 vs 时维度** - *内*: 主要在单一静态图片上操作,适用于消除同一张照片里存在的视觉重复元素;它属于空域编码方法之一。 ```python # 示例:简单的灰度化处理模拟帧内压缩效果 import cv2 img = cv2.imread('image.jpg',0) # 加载并转换成灰度图 compressed_img = cv2.resize(img, (img.shape[1]//2, img.shape[0]//2)) # 缩放尺寸以简化表示 ``` - **: 跨越多执行分析,旨在捕捉相邻或相近时刻的画面变化趋势,从而达到更高的压缩比例;涉及到了时序列上的优化策略。 - **压缩性质** - *内*: 处理的是独立的一幅图像,不会跨越多幅图像。虽然有时会应用一些无损技术如离散余弦变换(DCT),但在实际应用场景下往往是带有一定损失性的压缩形式。 - **: 则更多地涉及到有损压缩手段,比如运动估计/补偿(ME/MC), 运动矢量预测等高级特性,这些都可能导致最终输出的质量有所下降,但能极大程度提高传输效率存储利用率. - **对后续解码的影响** - *内*: I作为关键,在整个GOP(Group of Pictures)结构中起着至关重要的作用。一旦I受损,会影响以此为基础重建的所有P/B的准确性. - **: P/B依靠前后的I/P做参考完成解码工作,所以其稳定性相对较低,更易受到信道干扰等因素的影响而产生误码传播现象。 #### 3. 应用场景差异 对于实时性强、可靠性要求高的场合,例如医疗影像传输或者军事指挥控制系统,倾向于优先考虑帧内压缩方案,因为这类环境不允许任何可能引起连锁反应的小概率事件发生。而在互联网直播平台或是在线教育领域,由于带宽资源有限且观众数量庞大,往往会选择综合运用两种压缩机制的优势——先通过对各实施高效的内预处理,再借助强大的算法进一步削减总流量开销,进而获得最佳性价比的表现[^4].
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值