多尺度特征的提取

本文探讨了图像金字塔和多尺度特征在目标检测中的作用。图像金字塔用于获取不同尺度的特征,但增加计算成本;SSD利用多尺度特征层直接检测,减少额外计算;FPN通过上采样和低层特征融合实现多尺度预测,提高小目标检测准确性。这些方法在现代目标检测网络设计中起着关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、图像金字塔

将图片进行不同尺度的缩放,得到图像金字塔,然后对每层图片提取不同尺度的特征,得到特征图。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。
特点:不同尺度的特征都可以包含很丰富的语义信息,精度高 ,但速度慢。

2、多尺度的卷积层

conv-3的低网络层,有更小的感受野,获取的是低层信息,对小目标的提取能力更好;而高层如conv-5,获取的是高层语义信息,对于大目标的检测更加准确。对于不同的输出层设计不同尺度的目标检测器,完成多尺度下的检测问题。卷积网络不同层得到的特征特点的不同,对不同层的特征采用不同的利用方式。

3、SSD

4、U-Net

6、FPN(特征金字塔)

FPN网络最开始是为目标检测而设计的,在之前的目标检测网络中通常是使用顶层特征做预测,但是低层语义信息少,对小目标检测不准确;后来有网络采用多尺度信息融合的方式,用融合后的特征做预测。FPN的特殊之处在于预测是在不同特征层独立进行的。

(a)图像金字塔,即将图像做成不同的scale,然后不同scale的图像生成对应的不同scale的特征。这种方法的缺点在于增加了时间成本。有些算法会在测试时候采用图像金字塔。
(b)像SPP net,Fast RCNN,Faster RCNN是采用这种方式,即仅采用网络最后一层的特征。
(c)像SSD(

### 多尺度特征提取的技术方法 多尺度特征提取是一种用于增强模型对数据多层次特性的理解能力的关键技术。以下是几种常见的实现方式: #### MFEN:轻量级多尺度特征提取超分辨率网络 MFEN 是一种专为嵌入式系统设计的轻量化多尺度特征提取框架,旨在提高图像或其他高维数据的超分辨率重建效果[^1]。该方法通过优化计算资源分配,在保持高效的同时增强了对不同尺度细节的捕获。 #### 传统金字塔结构 传统的多尺度特征提取通常采用金字塔结构来表示输入数据的不同层次信息。这种方法通过对原始数据进行多次下采样和上采样操作构建多个尺度版本的数据集,并利用这些数据训练神经网络以学习跨尺度的相关性[^2]。 #### Poly-Scale Convolution (PSConv) Poly-Scale Convolution 提出了一个新的方向——即在同一层内完成多尺度特征的学习过程。不同于以往需要堆叠大量标准卷积层或者复杂的架构调整方案,PSConv 利用了带有可变扩张因子的卷积核来进行操作。这种创新允许单个 PSConv 层自动适应并捕捉来自各种大小范围内的对象边界以及纹理等重要属性[^3]。 ```python import torch.nn as nn class PSConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation_rates=[1, 2, 4]): super(PSConv, self).__init__() layers = [] for rate in dilation_rates: pad = int((kernel_size - 1) * rate / 2) conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels//len(dilation_rates), kernel_size=kernel_size, stride=stride, padding=pad, dilation=rate) layers.append(conv_layer) self.poly_scale_conv = nn.Sequential(*layers) def forward(self, x): outputs = [conv(x) for conv in self.poly_scale_conv] output = torch.cat(outputs, dim=1) return output ``` 上述代码片段展示了如何基于 PyTorch 构建一个简单的 PSConv 模型实例化流程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值